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1 Introduction

In this chapter, we elaborate on a semantic processing framework based on a mode
of inference called abduction, or inference to the best explanation. In logic, ab-
duction is a kind of inference which arrives at an explanatory hypothesis given an
observation. Hobbs et al. (1993) describe how abductive reasoning can be applied
to the discourse processing problem viewing the process of interpreting sentences
in discourse as the process of providing the best explanation of why the sentence
would be true. In this framework, interpreting a sentence means

• proving its logical form,
• merging redundancies where possible, and
• making assumptions where necessary.

As the reader will see later in this chapter, abductive reasoning as a discourse pro-
cessing technique helps to solve many pragmatic problems such as reference resolu-
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tion, the interpretation of noun compounds, and the resolution of some kinds of syn-
tactic and semantic ambiguity as a by-product. We adopt this approach. Specifically,
we use a system we have built called Mini-TACITUS1 (Mulkar et al., 2007) that pro-
vides the expressivity of logical inference but also allows probabilistic, fuzzy, or
defeasible inference and includes measures of the “goodness” of abductive proofs
and hence of interpretations of texts and other situations.

The success of a discourse processing system based on inferences heavily de-
pends on a knowledge base. This chapter shows how a large and reliable knowledge
base can be obtained by exploiting existing lexical semantic resources and can be
successfully applied to reasoning tasks on a large scale. In particular, we experi-
ment with axioms extracted from WordNet (Fellbaum, 1998), and FrameNet (Rup-
penhofer et al., 2006). In axiomatizing FrameNet we rely on the study described in
(Ovchinnikova et a., 2010; Ovchinnikova, 2012).

We evaluate our inference system and knowledge base in recognizing textual en-
tailment (RTE). As the reader will see in the following sections, inferences carried
out by Mini-TACITUS are fairly general and not tuned for a particular application.
We decided to test our approach on RTE because this is a well-defined task that cap-
tures major semantic inference needs across many natural language processing ap-
plications, such as question answering, information retrieval, information extraction,
and document summarization. For evaluation, we have chosen the RTE-2 Challenge
data set (Bar-Haim et al., 2006), because besides providing text-hypothesis pairs
and a gold standard this data set has been annotated with FrameNet frame and role
labels (Burchardt and Pennacchiotti, 2008), which gives us the possibility of evalu-
ating our frame and role labeling based on the axioms extracted from FrameNet.

This chapter is structured as follows. Section 2 introduces weighted abduction.
In section 3, we briefly describe our discourse processing pipeline and explain how
abductive reasoning can be applied to discourse processing. Section 4 concerns uni-
fication in weighted abduction. In section 5, we describe the obtained knowledge
base. In section 6, optimizations of the Mini-TACITUS system required to make the
system able to handle large knowledge bases are described. Section 7 presents our
procedure for recognizing textual entailment. In section 8, we provide an evalua-
tion of our discourse processing pipeline on the RTE-2 data set. The last section
concludes the chapter and gives an outlook on future work and perspectives.

2 Weighted Abduction

Abduction is inference to the best explanation. Formally, logical abduction is de-
fined as follows:

1 http://www.rutumulkar.com/tacitus.html



Given: Background knowledge B, observations O, where both B and O are sets
of first-order logical formulas,

Find: A hypothesis H such that H ∪B |= O,H ∪B 6|=⊥, where H is a set of
first-order logical formulas.

Typically, there exist several hypotheses H explaining O. To rank candidate hy-
potheses according to plausibility, we use the framework of weighted abduction as
defined by Hobbs et al. (1993). In this framework, observation O is a conjunction of
propositions existentially quantified with the widest possible scope

P1 : c1∧ ...∧Pn : cn (1)

where Pi are propositions and ci are positive real-valued costs (i ∈ {1, ..,n}). We use
the notation P : c to say that proposition P has cost c, and cost(P) to represent the
cost of P. The background knowledge B is a set of first-order logic formulas of the
form

Pw1
1 ∧ ...∧Pwn

n → Q1∧ ...∧Qm (2)

where Pi,Q j are propositions and wi is a positive real-valued weight (i ∈ {1, ..,n},
j ∈ {1, ..,m}). We use the notation Pw to indicate that proposition P has weight w.
All variables on the left-hand side of such axioms are universally quantified with
the widest possible scope. Variables occurring on the right-hand side only are exis-
tentially quantified.2

The two main inference operations in weighted abduction are backward chaining
and unification. Backward chaining is the introduction of new assumptions given an
observation and background knowledge. For example, given O = ∃x(q(x) : 10) and
B = {∀x(p(x)1.2→ q(x))}, there are two candidate hypotheses: H1 = ∃x(q(x) : 10)
and H2 = ∃x(p(x) : 12). In weighted abduction, a cost function f is used in order to
calculate assumption costs. The function takes two arguments: costs of the proposi-
tions backchained on and weight of the assumption. Usually, a multiplication func-
tion is used, i.e. f (c,w) = c ·w, where c is the cost of the propositions backchained
on and w is the weight of the corresponding assumption. For example, if q(x) costs
10 and w of p is 1.2 in the example above, then assuming p in H2 costs 12.

Unification is the merging of propositions with the same predicate name by as-
suming that their arguments are the same and assigning the smallest cost to the result
of the unification. For example, O = ∃x,y(p(x) : 10∧ p(y) : 20∧q(y) : 10). There is
a candidate hypothesis H = ∃x(p(x) : 10∧ q(x) : 10). The idea behind such merg-
ings is that if an assumption has already been made then there is no need to make it
again.

Both operations (backchaining and unification) can be applied any number of
times to generate a possibly infinite set of candidate hypotheses. Weighted abduction
defines the cost of hypothesis H as

2 In the rest of this chapter we omit quantification.



cost(H) = ∑
h∈H

cost(h) (3)

where h is an atomic conjunct in H (e.g., p(x) in the above H). In this framework,
minimum-cost explanations are best explanations. The main idea of weighted ab-
duction is to favor explanations involving fewer assumptions and more reliable as-
sumptions.

3 Discourse Processing Pipeline and Abductive Reasoning

Our discourse processing pipeline produces interpretations of texts given an ap-
propriate knowledge base. A text is first input to the English Slot Grammar (ESG)
parser (McCord, 1990, 2010; McCord et al., 2012). For each segment, the parse pro-
duced by ESG is a dependency tree that shows both surface and deep structure. The
deep structure is exhibited via a word sense predication for each node, with logical
arguments. These logical predications form a good start on a logical form (LF) for
the whole segment. A component of ESG converts the parse tree into a LF in the
style of Hobbs (1985).

The LF is a conjunction of predications, which have generalized entity arguments
that can be used for showing relationships among the predications. Hobbs (1985)
extends Davidson’s approach (Davidson, 1967) to all predications and posits that
corresponding to any predication that can be made in natural language, there is an
eventuality. Correspondingly, any predication in the logical notation has an extra
argument, which refers to the “condition” in which that predication is true. Thus, in
the logical form John(e1, j)∧ run(e2, j) for the sentence John runs, e2 is a running
event by John and e1 is a condition of j being named “John”.

In terms of weighted abduction, logical forms represent observations, which need
to be explained by background knowledge. In the context of discourse process-
ing, we call a hypothesis explaining a logical form an interpretation of this LF.
In our pipeline, the interpretation of the text is carried out by an inference system
called Mini-TACITUS (Mulkar-Mehta, 2007). Mini-TACITUS tries to prove the log-
ical form of the text, allowing assumptions where necessary. Where the system is
able to prove parts of the LF, it is anchoring it in what is already known from the
overall discourse or from a knowledge base. Where assumptions are necessary, it is
gaining new information. Obviously, there are many possible proofs in this proce-
dure. A cost function on proofs enables the system to chose the “best” (the cheapest)
interpretation. The key factors involved in assigning a cost are the following.

1. Proofs with fewer assumptions are favored.
2. Short proofs are favored over long ones.
3. Plausible axioms are favored over less plausible axioms.
4. Proofs are favored that exploit the inherent implicit redundancy in texts.

Let us illustrate the procedure with a simple example. Suppose that we want
to construct the best interpretation of the sentence John composed a sonata. As



a by-product, the procedure will disambiguate between two readings of compose,
namely between the “put together” reading instantiated, for example, in the sen-
tence The party composed a committee, and the “create art” reading After being
processed by the parser, the sentence will be assigned the following logical form,
where the numbers (10) after every proposition correspond to the default costs of
these propositions.3 The total cost of this logical form is equal to 30:

John(e1,x1) : 10∧ compose(e0,x1,x2) : 10∧ sonata(e2,x2) : 10

Suppose our knowledge base contains the following axioms:

1) put together(e,x1,x2)
0.6∧ collection(e2,x2)

0.6→ compose(e,x1,x2)
2) create art(e,x1,x2)

0.6∧ work of art(e2,x2)
0.6→ compose(e,x1,x2)

3) sonata(e,x)1.5→ work of art(e,x)

Axioms (1) and (2) correspond to the two readings of compose. Axiom (3) states
that a sonata is a work of art. The propositions on the right hand side (compose,
work of art) correspond to the given information, whereas the left hand side propo-
sitions will be assumed.

Two interpretations can be constructed for the LF above. The first one is the result
of the application of Ax. (1). The costs of the backchained propositions (compose,
sonata) are set to 0, because their costs are now carried by the newly introduced
assumptions (put together, collection). The total cost of the first interpretation I1 is
32.

I1: John(e1,x1) : 10∧ compose(e,x1,x2) : 0∧ sonata(e2,x2) : 10∧
put together(e0,x1,x2) : 6∧ collection(e2,x2) : 6

The second interpretation is constructed in several steps. First, Ax. (2) is applied,
so that compose is backchained on to create art and work of art with the costs 6.
Then, Ax. (3) is applied to work of art.

I2: John(e1,x1) : 10∧ compose(e,x1,x2) : 0∧ sonata(e2,x2) : 10∧
create art(e0,x1,x2) : 6∧ work of art(e2,x2) : 0∧ sonata(e2,x2) : 9

The total cost of I2 is 35. This interpretation is redundant, because it contains
the predicate sonata twice. The procedure will unify propositions with the same
predicate name, setting the corresponding arguments of these propositions to be
equal and assigning the minimum of the costs to the result of merging. Thus, the
final form of the second interpretation I2 with the cost of 25 contains only one
sonata with the cost of 9. The “create art” meaning of compose was chosen because
it reveals implicit redundancy in the sentence.

3 The actual value of the default costs of the input propositions does not matter, because the in-
terpretation costs are calculated using a multiplication function. The only heuristic we use here
concerns setting all costs of the input propositions to be equal (all propositions cost 10 in the
discussed example). This heuristic needs further investigation.



Thus, on each reasoning step the procedure 1) applies axioms to propositions
with non-zero costs and 2) merges propositions with the same predicate, assigning
the lowest cost to the result of merging. Reasoning terminates when no more axioms
can be applied. The procedure favors the cheapest interpretations. Among them, the
shortest proofs are favored; i.e. if two interpretations have the same cost then the
one that has been constructed with fewer axiom application steps is considered to
be “better”.

The described procedure provides solutions to a whole range of natural language
pragmatics problems, such as resolving ambiguity and discovering implicit rela-
tions in noun compounds, prepositional phrases, or discourse structure; see (Hobbs
et al., 1993) for detailed examples. Moreover, this account of interpretation solves
the problem of where to stop drawing inferences, which could easily be unlimited
in number; an inference is appropriate if it is part of the lowest-cost proof of the
logical form.

4 Unification in Weighted Abduction

Frequently, the lowest-cost interpretation results from identifying two entities with
each other, so that their common properties only need to be proved or assumed
once. This feature of the algorithm is called “unification”, and is one of the principal
methods by which coreference is resolved.

However, this feature of the weighted abduction algorithm has a substantial po-
tential for overmerging. Merging propositions with the same predicate names does
not always give the intended solution. If we know animal(e1,x) and animal(e2,y),
we do not want to assume x equals y if we also know dog(e3,x) and cat(e4,y). For
John runs and Bill runs, with the logical form John(e1,x)∧run(e2,x)∧Bill(e3,y)∧
run(e4,y), we do not want to assume John and Bill are the same individual just
because they are both running.

For the full treatment of the overmerging problem, one needs a careful analysis
of coreference, including the complicated issue of event coreference. In this study,
we adopt a heuristic solution.

The Mini-TACITUS system allows us to define non-merge constraints, which pre-
vent undesirable mergings at every reasoning step. Non-merge constraints have the
form x1 6= y1, . . . ,xn 6= yn. These constraints are generated by the system at each rea-
soning step. Given the propositions p(x1) and p(x2) occurring in the input logical
form and the non-merge constraint x1 6= x2, Mini-TACITUS does not merge p(x1)
and p(x2), because it would imply a conflict with the non-merge constraint. In the
experiments described in this book, we used the following rule for generating non-
merge constraints.

For each two propositions p(e1,x1, ...,xn) and p(e2,y1, ...,yn), which occur in the
input, if

• e1 is not equal to e2,



• p is not a noun predicate, and
• ∃i ∈ {1, . . . ,n} such that xi is not equal to yi, and both xi and yi occur as

arguments of propositions other than p(e1,x1, ...,xn) and p(e2,y1, ...,yn),

then add e1 6= e2 to the non-merge constraints.

This rule ensures that nouns can be merged without any restriction and other
predicates can be merged only if all their non-first arguments are equal (due to the
previous mergings) or uninstantiated. As seen from the statements above, the ar-
gument merging restriction concerns first arguments only. First arguments of all
predicates in the logical forms are treated by Mini-TACITUS as “handles” referring
to conditions, in which the predicate is true of its arguments, i.e. referring to the
predication itself, rather than to its semantic arguments.

The proposed non-merge rule is a heuristic, which corresponds to the intuition
that it is unlikely that the same noun refers to different entities in a short discourse,
while for other predicates this is possible. According to this rule the two eat propo-
sitions can be merged in the sentence John eats an apple and he eats the fruit slowly
having the following logical form4:

John(e1,x1)∧ eat(e2,x1,x2)∧apple(e3,x2)∧and(e4,e2,e5)∧
he(e1,x1)∧ eat(e5,x1,x3)∧ f ruit(e6,x3)∧ slowly(e7,e5)

In the logical form above, the propositions eat(e2,x1,x2) and eat(e5,x1,x3) can-
not be merged, because they do not refer to nouns and their third arguments x2
and x3 are not equal. If the knowledge base contains the axiom apple(e1,x1)→
f ruit(e1,x1) then the logical form above can be expanded into the following:

John(e1,x1)∧ eat(e2,x1,x2)∧apple(e3,x2)∧and(e4,e2,e5)∧
he(e1,x1)∧ eat(e5,x1,x3)∧ f ruit(e6,x3)∧apple(e6,x3)∧ slowly(e7,e5)

After the expansion, the noun propositions apple(e3,x2) and apple(e6,x3) can
be merged. Now, when all the arguments of the two eat propositions are equal, these
propositions can be merged as well.

Concerning the sentence John eats an apple and Bill eats an apple, merging of
two eat propositions is impossible, unless the system manages to prove that the
predicates John and Bill can refer to the same individual.

There are cases when the proposed rule does not block undesired mergings. For
example, given the sentence John owns red apples and green apples, it is wrong to
merge both apple propositions, because “being red” and “being green” are incom-
patible properties that cannot be both assigned to the same entity. Thus, it seems to
be reasonable to check whether two propositions to be merged have incompatible
properties. A detailed study of coreference in an abductive framework is described
in (Inoue, 2012).

4 The anaphoric he in the logical form is already linked to its antecedent John.



5 Knowledge Base

The proposed discourse processing procedure is based on a knowledge base (KB)
consisting of a set of axioms. In order to obtain a reliable KB with a large coverage
we exploited existing lexical-semantic resources.

First, we have extracted axioms from WordNet (Fellbaum, 1998), version 3.0.,
which has already proved itself to be useful in knowledge-intensive NLP applica-
tions. The central entity in WordNet (WN) is called a synset. Synsets correspond to
word senses, so that every lexeme can participate in several synsets. We used the
lexeme-synset mapping for generating axioms. For example, in the axioms below,
the verb compose is mapped to synset-X, which represents one of its senses.

synset-X(s,e)→ compose(e,x1,x2)

Moreover, we have converted the following WordNet relations defined on synsets
into axioms: hypernymy, instantiation, entailment, similarity, and meronymy. Hy-
pernymy and instantiation relations presuppose that the related synsets refer to the
same entity (the first axiom below), whereas other types of relations relate synsets
referring to different entities (the second axiom below).

synset-1(e0,e1)→ synset-2(e0,e1)
synset-1(e0,e1)→ synset-2(e2,e3)

WordNet also provides morphosemantic relations, which relate verbs and nouns,
e.g., buy-buyer. These relations can be used to generate axioms like the following
one.

buyer(e1,x1)→ buy(e2,x1,x2)

Additionally, we have exploited the WordNet synset definitions. In WordNet the
definitions are given in natural language form. We have used the extended WordNet
resource5, which provides logical forms for the definition in WordNet version 2.0.
We have adapted logical forms from extended WordNet to our representation format
and converted them into axioms; for example, the following axiom represents the
meaning of the synset containing such lexemes as horseback.

on(e1,e2,x1) ∧ back(e3,x1) ∧ of (e4,x1,x2) ∧ horse(e5,x2)→ synset-X(e0,x0)

The second resource, which we have used as a source of axioms, is FrameNet, re-
lease 1.5, see Ruppenhofer et al. (2006). FrameNet has a shorter history in NLP ap-
plications than WordNet, but its potential to improve the quality of question answer-
ing (Shen and Lapata, 2007) and recognizing textual entailment (Burchardt et al.,
2009) has been demonstrated. The lexical meaning of predicates in FrameNet is
represented in terms of frames, which describe prototypical situations spoken about

5 http://xwn.hlt.utdallas.edu/



in natural language. Every frame contains a set of roles corresponding to the partic-
ipants of the described situation. Predicates with similar semantics are assigned to
the same frame. For example, both give and hand over refer to the GIVING frame.
For most of the lexemes FrameNet provides syntactic patterns showing the surface
realization of these lexemes and their arguments. We used the patterns for deriving
axioms. For example, the axiom below corresponds to phrases like John gave a book
to Mary.

GIVING(e1,x1,x2,x3) ∧ DONOR(e1,x1) ∧ RECIPIENT(e1,x2) ∧ THEME(e1,x3)
→ give(e1,x1,x3) ∧ to(e2,e1,x2)

FrameNet also introduces semantic relations defined on frames such as inheri-
tance, causation or precedence; for example, the GIVING and GETTING frames are
connected with the causation relation. Roles of the connected frames are also linked,
e.g. DONOR in GIVING is linked with SOURCE in GETTING. Frame relations have
no formal semantics in FrameNet. In order to generate corresponding axioms, we
used the previous work on axiomatizing frame relations and generating new rela-
tions from corpora (Ovchinnikova et a., 2010; Ovchinnikova, 2012). An example of
an axiomatized relation is given below.

GIVING(e1,x1,x2,x3) ∧ DONOR(e1,x1) ∧ RECIPIENT(e1,x2) ∧ THEME(e1,x3)
→
GETTING(e2,x2,x3,x1)∧ SOURCE(e2,x1)∧ RECIPIENT(e1,x2)∧ THEME(e1,x3)

Axiom weights are calculated using the frequency of the corresponding word
senses in the annotated corpora. The information about frequency is provided both
by WordNet and FrameNet. In our framework, axioms of the type species→ genus
should have weights greater than 1, which means that assuming species costs more
than assuming genus, because there might be many possible species for the same
genus. The weights of such axioms are heuristically defined as ranging from 1 to 2.

In order to assign a weight wi to a sense i of a lexeme, we use information about
the frequency fi of the word sense in the annotated corpora. An obvious way of
converting the frequency fi to the weight wi is the following equation:

wi = 2− fi

∑1≤n≤|S| fn
(4)

where S is a set of all senses of the lexeme. All axioms representing relations receive
equal weights of 1.2.

Both WordNet and FrameNet are manually created resources, which ensures a
relatively high quality of the resulting axioms as well as the possibility of exploiting
the linguistic information provided for structuring the axioms. Although manual
creation of resources is a very time-consuming task, WordNet and FrameNet, being
long-term projects, have an extensive coverage of English vocabulary. The coverage
of WordNet is currently larger than that of FrameNet (155 000 vs. 12 000 lexemes).



However, the fact that FrameNet introduces complex argument structures (roles)
for frames and provides mappings of these structures makes FrameNet especially
valuable for reasoning.

The complete list of axioms we have extracted from these resources is given in
table 1. The number of axioms is approximated to the nearest hundred.

Table 1 Statistics for extracted axioms.
Axiom type Source Number of axioms
Lexeme-synset mappings WN 3.0 207,000
Lexeme-synset mappings WN 2.0 203,100
Synset relations WN 3.0 141,000
Derivational relations WN 3.0 (annotated) 35,000
Synset definitions WN 2.0 (parsed, annotated) 115,400
Lexeme-frame mappings FN 1.5 49,100
Frame relations FN 1.5 + corpora 5,300

6 Adapting Mini-TACITUS to a Large Knowledge Base

Mini-TACITUS (Mulkar et al., 2007) began as a simple backchaining theorem-
prover intended to be a more transparent version of the original TACITUS sys-
tem, which was based on Stickel’s PTTP system (Stickel, 1988). Originally, Mini-
TACITUS was not designed for treating large amounts of data. A clear and clean
reasoning procedure rather than efficiency was in the focus of its developers. In or-
der to make the system work with the large knowledge base, we had to perform
several optimization steps and add a couple of new features.

6.1 Time and Depth Parameters

For avoiding the reasoning complexity problem, we introduced two parameters. A
time parameter t is used to restrict the processing time. After the processing time
exceeds t the reasoning terminates and the best interpretation so far is output. The
time parameter ensures that an interpretation will be always returned by the proce-
dure even if reasoning could not be completed in a reasonable time.

A depth parameter d restricts the depth of the inference chain. Suppose that a
proposition p occurring in the input has been backchained on and a proposition
p′ has been introduced as a result. Then, p′ will be backchained on and so on. The
number of such iterations cannot exceed d. The depth parameter reduces the number
of reasoning steps.

The interaction between the time and depth parameters is shown in Algorithm 1.



Algorithm 1 Mini-TACITUS reasoning algorithm: interaction of the time and depth
parameters.
Input: a logical form LF of a text fragment, a knowledge base KB,

a depth parameter D, a cost parameter C, a time parameter T
Output: the best interpretation Ibest of LF
1: Iinit := {p(e,x1, . . . ,xn,C,0)|p(e,x1, . . . ,xn) ∈ LF}
2: I set := {Iinit}
3: apply inference(Iinit )
4: Cheapest I := {I|I ∈ I set and ∀I′ ∈ I set : cost(I)≤ cost(I′)}
5: Best I := {I|I ∈Cheapest I and

∀I′ ∈Cheapest I : proo f length(I)≤ proo f length(I′)}
6: return Ibest , which is the first element of Best I

Subroutine apply inference
Input: interpretation I
1: while processing time < T do
2: for α ∈ KB do
3: for PropSubset ⊆ I such that ∀p(e,x1, . . . ,xn,c,d) ∈ PropSubset : d < D do
4: if α is applicable to PS then
5: Inew := result of application of α to PS
6: I set := I set ∪{Inew}
7: apply inference(Inew)
8: end if
9: end for

10: end for
11: end while

6.2 Filtering out Axioms and Input Propositions

Since Mini-TACITUS processing time increases exponentially with the input size
(sentence length and number of axioms), making such a large set of axioms work
was an additional issue. For speeding up reasoning it was necessary to reduce both
the number of the input propositions and the number of axioms. In order to reduce
the number of axioms, the axioms that could never lead to any merging are filtered
out. Suppose that the initial logical form contains the following propositions:

a(x1, ...,xn)∧b(y1, ...ym)∧ c(z1, ...,zk)

and the knowledge base consists of the following axioms:

(1) d(x1, ...,xl)→ a(y1, ...,yn)
(2) b(x1, ...,xm)→ d(y1, ...,yl)
(3) e(x1, ...,xt)→ c(y1, ...yk)

Given the logical form above, Ax. (3) is obviously useless. It can be evoked by
the input proposition c(z1, ...,zk) introducing the new predicate e, but it can never
lead to any merging reducing the interpretation cost. Thus, there is no need to apply
this axiom.



Similarly, proposition c(z1, ...,zk) in the input logical form can never be merged
with any other proposition and can never evoke an axiom introducing a proposi-
tion, which can be merged with any other. Therefore, removing the proposition
c(z1, ...,zk) from the input for the reasoning machine and adding it to the best inter-
pretation after the reasoning terminates (replacing its arguments with new variables
if mergings took place) does not influence the reasoning process.

In logical forms, propositions that could not be linked to the rest of the discourse
often refer to modifiers. For example, consider the sentence Yesterday, John bought a
book, but he has not started reading it yet. The information concerning John buying
a book is in the focus of this text fragment; it is linked to the second part of the
sentence. However, the modifier yesterday just places the situation in time; it is not
connected to any other part of the discourse.

7 Recognizing Textual Entailment

As the reader can see from the previous sections, the discourse processing procedure
we have presented is fairly general and not tuned for any particular type of inference.
We have evaluated the procedure and the KB derived from WordNet and FrameNet
on the recognizing textual entailment (RTE) task, which is a generic task that seems
to capture major semantic inference needs across many natural language processing
applications. In this task, the system is given a text (T) and a hypothesis (H) and must
decide whether the hypothesis is entailed by the text plus commonsense knowledge.

Our approach is to interpret both the text and the hypothesis using Mini-TACITUS,
and then see whether adding information derived from the text to the knowledge
base will reduce the cost of the best abductive proof of the hypothesis as compared
to using the original knowledge base only. If the cost reduction exceeds a threshold
determined from a training set, then we predict entailment.

A simple example would be the text John gave a book to Mary and the hypothesis
Mary got a book. Our pipeline constructs the following logical forms for these two
sentences.

T: John(e1,x1):10 ∧ give(e0,x1,x2):10 ∧ book(e2,x2):10 ∧
to(e4,e0,x3):10 ∧Mary(e3,x3):10

H: Mary(e1,x1):10 ∧ get(e0,x1,x2):10 ∧ book(e2,x2):10

These logical forms constitute the Mini-TACITUS input. Mini-TACITUS applies
the axioms from the knowledge base to the input logical forms in order to reduce
the overall cost of the interpretations. Suppose that we have the following FrameNet
axioms in our knowledge base.

1) GIVING(e1,x1,x2,x3)
0.9 → give(e1,x1,x3) ∧ to(e2,e1,x2)

2) GETTING(e1,x1,x2,x3)
0.9 → get(e1,x1,x2)

3) GIVING(e1,x1,x2,x3)
1.2 → GETTING(e2,x2,x3,x1)



The first axiom maps give to to the GIVING frame, the second one maps get to
GETTING and the third one relates GIVING and GETTING with the causation rela-
tion. As a result of the application of the axioms the following best interpretations
will be constructed for T and H.

I(T): John(e1,x1):10 ∧ give(e0,x1,x2):0 ∧ book(e2,x2):10 ∧
to(e2,e0,x3):0 ∧Mary(e3,x3):20 ∧ GIVING(e0,x1,x2,x3):18

I(H): Mary(e1,x1):10 ∧ get(e0,x1,x2):0 ∧ book(e2,x2):10 ∧
GETTING(e0,x1,x2):9

The total cost of the best interpretation for H is equal to 29. Now the best inter-
pretation of T will be added to H with the zero costs (as if T has been totally proven)
and we will try to prove H once again. First of all, merging of the propositions with
the same names will result in reducing costs of the propositions Mary and book to
0, because they occur in T:

I(I(T)+H): John(e1,x1):0 ∧ give(e0,x1,x2):0 ∧ book(e2,x2):0 ∧
to(e2,e0,x3):0 ∧Mary(e3,x3):20 ∧ GIVING(e0,x1,x2,x3):0 ∧
get(e4,x3,x2):0 ∧ GETTING(e4,x3,x2):9

The only proposition left to be proved is GETTING. Using the GETTING-GIVING
relation in Ax. (3) above, this proposition can be backchained on to GIVING, which
will merge with GIVING coming from the T sentence. H appears to be proven com-
pletely with respect to T; the total cost of its best interpretation given T is equal to
0. Thus, using knowledge from T helped to reduce the cost of the best interpretation
of H from 29 to 0.

In our framework, a full treatment of the logical structure of natural language
would require a procedure for assessing the truth claims of a text given its logi-
cal form. Quantifiers and logical operators would be treated as predicates, and their
principal properties would be expressed in axioms. However, we have not yet im-
plemented this. Without a special account for the logical connectors if, not and or,
given a text If A then B and a hypothesis A and B, our procedure will most likely pre-
dict entailment. Even worse, not A will entail A. Similarly, modality is not handled.
Thus, X said A and maybe A both entail A. At the moment our RTE procedure mainly
accounts for the informational content of texts, being able to detect the “aboutness”
overlap of T and H, and does not reason about the truth or falsity of T and H.

8 Experimental Evaluation

We evaluated our procedure on the RTE-2 Challenge dataset6 (Bar-Haim et al.,
2006). The RTE-2 dataset contains the development and the test set, both including
800 text-hypothesis pairs. Each dataset consists of four subsets, which correspond

6 http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/



to typical success and failure settings in different applications: information extrac-
tion (IE), information retrieval (IR), question answering (QA), and summarization
(SUM). In total, 200 pairs were collected for each application in each dataset.

The main task in the RTE-2 challenge was entailment prediction for each pair in
the test set. The evaluation criterion for this task was accuracy - the percentage of
pairs correctly judged. The accuracy achieved by the 23 participating systems ranges
from 53% to 75%. Two systems had 73% and 75% accuracy, two systems achieved
62% and 63%, while most of the systems achieved 55%–61% (cf. Bar-Haim et al.,
2006).

Garoufi (2007) has performed a detailed study of the RTE-2 dataset investigating
factors responsible for entailment in a significant number of text-hypothesis pairs.
Surprisingly, Garoufi’s conclusion is that such shallow features as lexical overlap
(number of words from hypothesis, which also occur in text) seem to be more useful
for predicting entailment than any sophisticated linguistic analysis or knowledge-
based inference. This fact may have two explanations: Either the RTE-2 dataset is
not properly balanced for testing advanced textual entailment technology, or the
state-of-the-art RTE systems indeed cannot suggest anything more effective than
simple lexical overlap.

Nevertheless, we chose the RTE-2 dataset for our experiments. First, none of
the other RTE datasets has been studied in so much detail, therefore there is no
guarantee that any other dataset has better properties. Second, the RTE-2 test set
was additionally annotated with FrameNet semantic roles, which enables us to use
it for evaluation of semantic role labeling.

8.1 Weighted Abduction for Recognizing Textual Entailment

We evaluated our procedure in RTE as described in section 7. The RTE-2 develop-
ment set was used to train the threshold for discriminating between the “entailment”
and “no entailment” cases. Interpretation costs were normalized to the number of
propositions in the corresponding H logical forms. This was done in order to nor-
malize over the prediction of longer and shorter hypotheses. If hypothesis h1 con-
tains more propositions than h2, then it can potentially contain more propositions
not linked to propositions in the text.

As a baseline we processed the datasets with an empty knowledge base. The
depth parameter was set to 3. Then, we did different runs, evaluating knowledge
extracted from different resources separately.7 Table 2 contains the results of our
experiments.8 The results suggest that the proposed method seems to be promising
as compared to the other systems evaluated on the same task. Our best run gives
62.6% accuracy.

7 The computation was done on a High Performance Cluster (320 2.4 GHz nodes, CentOS 5.0) of
the Center for Industrial Mathematics (Bremen, Germany).
8 “Number of axioms” stands for the average number of axioms applied per sentence.



Table 2 Evaluation results for the RTE-2 test set.

KB Accuracy Number of axioms
T H

No KB 57.3% 0 0
WN 3.0 59.6% 294 111

FN 60.1% 1233 510
Ext. WN 2.0 58.1% 215 85
WN 3.0 + FN 62.6% 1527 521

Task Accuracy
SUM 75%

IR 64%
QA 62%
IE 50%

The obtained baseline of 57.3% is close to the lexical overlap baselines reported
by the participants of RTE-2 (Bar-Haim et al., 2006). Although FrameNet has pro-
vided fewer axioms than WordNet in total (ca. 50 000 vs. 600 000), its application
resulted in better accuracy than application of WordNet. The reason for this might be
the confusing fine-grainedness of WordNet, which makes word sense disambigua-
tion difficult. Moreover, the average number of WordNet axioms per sentence is
smaller than the number of FrameNet axioms (cf. table 2). This happens because
the relational network of FrameNet is much more dense than that of WordNet.

The lower performance of the system using the KB consisting of axioms ex-
tracted from extended WordNet (Ext. WN 2.0) can be explained. The axioms ex-
tracted from the synset definitions introduce a lot of new lexemes into the logical
form, since these axioms define words with the help of other words rather than
abstract concepts. These new lexemes trigger more axioms. Finally, too many new
lexemes are added to the final best interpretation, which can often be noisy. The WN
3.0 and FN axioms set do not cause this problem, because these axioms operate on
frames and synsets rather than on lexemes.

For our best run (WN 3.0 + FN), we present the accuracy data for each applica-
tion separately (table 2). The distribution of the performance of Mini-TACITUS on
the four datasets corresponds to the average performance of systems participating in
RTE-2 as reported by Garoufi (2007). The most challenging task in RTE-2 appeared
to be IE. QA and IR follow, and finally, SUM was titled the “easiest” task, with a
performance significantly higher than that of any other task.9

Experimenting with the time parameter t restricting processing time (see sec-
tion 6), we found that the performance of Mini-TACITUS increases with increasing
time of processing. This is not surprising. The smaller t is, the fewer chances Mini-
TACITUS has to apply all relevant axioms. Tracing the reasoning process, we found
that given a long sentence and a short processing time Mini-TACITUS had time to
construct only a few interpretations, and the “real” best interpretation was not al-
ways among them. For example, if the processing time is restricted to 30 minutes
per sentence and the knowledge base contains some hundreds of axioms, then Mini-
TACITUS has not enough time to apply all axioms up to depth 3 and construct all

9 In order to get a better understanding of which parts of our KB are useful for computing entail-
ment and for which types of entailment, in future, we are planning to use the detailed annotation of
the RTE-2 dataset describing the source of the entailment, which was produced by Garoufi (2007).
We would like to thank one of the reviewers of our IWCS 2011 paper which is the basis of this
chapter for giving us this idea.



possible interpretations in order to select the best one, while processing a single sen-
tence for 30 minutes is definitely not feasible in a realistic setting. This suggests that
optimizing the system computationally could lead to producing significantly better
results.

Several remarks should be made concerning our RTE procedure. First, measuring
overlap of atomic propositions, as performed by most of the RTE systems (cf. Dagan
et al., 2010), does not seem to be the perfect measure for predicting entailment. In
the example below, H is fully lexically contained in T. Only one proposition in and
its arguments pointing to the time of the described event actually make a difference
in semantics of T and H and imply “no entailment” prediction.

T: He became a boxing referee in 1964 and became most well-known for his
decision against Mike Tyson, during the Holyfield fight, when Tyson bit Holy-
field’s ear.

H: Mike Tyson bit Holyfield’s ear in 1964.

As mentioned before, a much more elaborate treatment of logical connectors,
quantification, and modality is required. In the example below, H is fully contained
in T, but there is still no entailment.

T: Drew Walker, NHS Tayside’s public health director, said: “It is important to
stress that this is not a confirmed case of rabies.”

H: A case of rabies is confirmed.

In order to address some of the problems mentioned above, one can experiment
with more sophisticated classification methods (e.g., SVM or Decision Trees). The
number of proven/unproven propositions for each part of speech can be used as
a specific feature. This solution might reflect the intuition that an unproven verb,
preposition, or negation is more likely to imply “no entailment” than an unproven
adjective.

Obviously, WordNet and FrameNet alone are not enough to predict entailment.
In the example below, our system inferred that president is related to presidential,
Tehran is a part of Iran, mayor and official can refer to the same person, runoff
and election can mean the same. However, all this information does not help us to
predict entailment. We rather need to interpret the genitive Iran’s election as Iran
holds election and be able to infer that if there is an election between A and B, then
A faces B in the election.

T: Iran will hold the first runoff presidential election in its history, between
President Akbar Hashemi Rafsanjani and Tehran’s hard-line mayor, election
officials said Saturday.

H: Hashemi Rafsanjani will face Tehran’s hard-line mayor in Iran’s first runoff
presidential election ever, officials said Saturday.



The knowledge needed for RTE has been analysed, for example, in (Clark et al.,
2007) and (Garoufi, 2007). In both works, the conclusion is that lexical-semantic
relations are just one type of knowledge required. Thus, our knowledge base requires
significant extension.

8.2 Semantic Role Labeling

For the run using axioms derived from FrameNet, we have evaluated how well we
do in assigning frames and frame roles. For Mini-TACITUS, semantic role labeling
is a by-product of constructing the best interpretation. But since this task is con-
sidered to be important as such in the NLP community, we provide an additional
evaluation for it. As a gold standard we have used the Frame-Annotated Corpus for
Textual Entailment, FATE (Burchardt and Pennacchiotti, 2008). This corpus pro-
vides frame and semantic role label annotations for the RTE-2 challenge test set.10

It is important to note that FATE annotates only those frames that are relevant for
computing entailment. Since Mini-TACITUS makes all possible frame assignments
for a sentence, we provide only the recall measure for the frame match and leave the
precision out.

The FATE corpus was also used as a gold standard for evaluating the Shal-
maneser system (Erk and Pado, 2006), which is a state-of-the-art system for as-
signing FrameNet frames and roles. In table 3, we replicate results for Shalmaneser
alone and Shalmaneser boosted with WordNet Detour to FrameNet (Burchardt et al.,
2005). WN-FN Detour extended the frame labels assigned by Shalmaneser with the
labels related via the FrameNet hierarchy or by the WordNet inheritance relation,
cf. Burchardt et al. (2009). In frame matching, the number of frame labels in the
gold standard annotation that can also be found in the system annotation (recall)
was counted. Role matching was evaluated only on the frames that are correctly
annotated by the system. The number of role labels in the gold standard annota-
tion that can also be found in the system annotation (recall) as well as the number
of role labels found by the system that also occur in the gold standard (precision),
were counted.11 Table 3 shows that given FrameNet axioms, the performance of
Mini-TACITUS on semantic role labeling is comparable with those of the system
specially designed to solve this task.12

10 FATE was annotated with the FrameNet 1.3 labels, while we have been using version 1.5
for extracting axioms. However, in the new FN version the number of frames and roles in-
creases and there is no message about removed frames in the General Release Notes R1.5, see
http://framenet.icsi.berkeley.edu. Therefore we suppose that most of the frames and roles used for
the FATE annotation are still present in FN 1.5.
11 We do not compare filler matching, because the FATE syntactic annotation follows different
standards as the one produced by the ESG parser, which makes aligning fillers non-trivial.
12 There exists one more probabilistic system labeling text with FrameNet frames and roles, called
SEMAFOR (Das et al., 2010). We do not compare our results with the results of SEMAFOR, be-
cause it has not been evaluated against the FATE corpus yet.



Table 3 Evaluation of frames/roles labeling towards FATE.

System Frame match
Recall

Role match
Precision Recall

Shalmaneser 0.55 0.54 0.37
Shalmaneser + Detour 0.85 0.52 0.36
Mini-TACITUS 0.65 0.55 0.30

Unfortunately, FrameNet does not really provide any semantic typing for the
frame roles. This type of information would be extremely useful for solving the
SRL task. For example, consider the phrases John took a bus and the meeting took
2 hours. The lexeme take can be mapped both to the RIDE VEHICLE and TAK-
ING TIME frame. Our system can use only the external context for disambigua-
tion of the verb take. For example, if the phrase John took a bus is accompanied
by the phrase He got off at 10th street, it is possible to use the relation between
RIDE VEHICLE evoked by take and DISEMBARKING evoked by get off. However,
no information about possible fillers of the roles of the RIDE VEHICLE frame (liv-
ing being and vehicle) and the TAKING TIME frame (activity and time duration) is
provided by FrameNet itself. Future work on SRL using FrameNet should include
learning semantic preferences for frame roles from corpora.

9 Conclusion and Future Work

This chapter presents a discourse processing framework including the abductive
reasoner called Mini-TACITUS. We showed that interpreting texts using weighted
abduction helps solve pragmatic problems in discourse processing as a by-product.
In this chapter, particular attention was paid to reasoning with a large and reliable
knowledge base populated with axioms extracted from such lexical-semantic re-
sources as WordNet and FrameNet. The inference procedure as well as the knowl-
edge base were evaluated in the recognizing textual entailment task. The data for
evaluation were taken from the RTE-2 Challenge. First, we have evaluated the accu-
racy of the entailment prediction. Second, we have evaluated frame and role labeling
using the Frame-Annotated Corpora for Textual Entailment as the gold standard. In
both tasks our system showed performance comparable with those of the state-of-
the art systems. Since the inference procedure and the axiom set are general and not
tuned for a particular task, we consider the results of our experiments to be promis-
ing concerning possible manifold applications of the proposed discourse processing
pipeline.

The experiments we have carried out have shown that there is still a lot of room
for improving the procedure. First, for successful application of weighted abduc-
tion on a large scale the system needs to be computationally optimized. In its cur-
rent state, Mini-TACITUS requires too much time for producing satisfactory re-
sults. As our experiments suggest, speeding up reasoning may lead to significant



improvements in the system performance. Since Mini-TACITUS was not originally
designed for large-scale processing, its implementation is in many aspects not effec-
tive enough. Recently, an alternative implementation of weighted abduction based
on Integer Linear Programming (ILP) was developed (Inoue and Inui, 2011). In this
approach, the abductive reasoning problem is formulated as an ILP optimization
problem. In a preliminary experiment the ILP-based system achieved a speed-up
over Mini-TACITUS of two orders of magnitude (Inoue and Inui, 2011).13

Second, in the future we plan to elaborate our treatment of natural language ex-
pressions standing for logical connectors such as implication if, negation not, dis-
junction or and others. Modality and quantifiers such as all, each, some also re-
quire a special treatment. This advance is needed in order to achieve more precise
entailment inferences, which are at the moment based in our approach on the core
information content (“aboutness”) of texts. Concerning the heuristic non-merge con-
straints preventing undesired mergings (see 4), we have performed a detailed study
of this issue that is published in Inoue et al. (2012). .

Another future direction concerns the enlargement of the knowledge base. Hand-
crafted lexical-semantic resources such as WordNet and FrameNet provide both an
extensive lexical coverage and a high-value semantic labeling. However, such re-
sources still lack certain features essential for capturing some of the knowledge
required for linguistic inferences. First of all, manually created resources are static;
updating them with new information is a slow and time-consuming process. By
contrast, commonsense knowledge and the lexicon undergo daily updates. This is
especially true for proper names. Although some of the proper names have been
already included in WordNet, new names appear regularly. In order to accommo-
date dynamic knowledge, we plan to make use of the distributional properties of
words in large corpora. A similar approach is described, for example, in (Peñas and
Ovchinnikova, 2012).

Lexical-semantic resources as knowledge sources for reasoning have another
shortcoming: They imply too little structure. WordNet and FrameNet enable some
argument mappings of related synsets or frames, but they cannot provide a more
detailed concept axiomatization. We are engaged in the manual encoding of ab-
stract theories explicating concepts that pervade natural language discourse, such as
causality, change of state, and scales, and the manual encoding of axioms linking
lexical items to these theories. The core theories should underlie axiomatization of
such highly frequent and ambiguous words as have. A selection of the core theories
can be found at http://www.isi.edu/∼hobbs/csk.html.

We believe that implementation of these improvements and extensions will make
the proposed discourse processing pipeline a powerful reasoning system equipped
with enough knowledge to solve manifold NLP tasks on a large scale. In our view,
the experiments with the axioms extracted from the lexical-semantic resources pre-
sented in this chapter show the potential of weighted abduction for natural language
processing and open new ways for its application.

13 The discourse processing pipeline including the ILP-based abductive reasoner is available at
https://github.com/metaphor-adp/Metaphor-ADP.
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