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Abstract— Humans have an amazing ability to bootstrap
new knowledge. The concept of structural bootstrapping refers
to mechanisms relying on prior knowledge, sensorimotor ex-
perience, and inference that can be implemented in robotic
systems and employed to speed up learning and problem
solving in new environments. In this context, the interplay
between the symbolic encoding of the sensorimotor information,
prior knowledge, planning, and natural language understanding
plays a significant role. In this paper, we show how the
symbolic descriptions of the world can be generated on the
fly from the continuous robot’s memory. We also introduce a
multi-purpose natural language understanding framework that
processes human spoken utterances and generates planner goals
as well as symbolic descriptions of the world and human actions.
Both components were tested on the humanoid robot ARMAR-
III in a scenario requiring planning and plan recognition based
on human-robot communication.

I. INTRODUCTION

Significant research efforts in humanoid robotics have
been focused on mimicking human cognition. This especially
concerns the autonomous acquisition of knowledge and ap-
plication of this knowledge in previously unseen situations.
The concept of structural bootstrapping was introduced in
the context of the Xperience project [1]. It addresses mecha-
nisms relying on prior knowledge, sensorimotor experience,
and inference that can be implemented in robotic systems
and employed to speed up learning and problem solving
in new environments. Earlier experiments demonstrate how
structural bootstrapping can be applied at different levels of a
robotic architecture including a sensorimotor level, a symbol-
to-signal mediator level, and a planning level [2], [3].

In the context of structural bootstrapping, the interplay
between the symbolic encoding of the sensorimotor infor-
mation, prior knowledge, planning, and natural language
understanding plays a significant role. Available robot skills
and the world state have to be represented in a symbolic
form for a planner to be able to operate with it. In the
previous experiments, the symbolic representations of the
objects in the world and their initial locations were created
manually and hard-coded in the scenario settings, cf. [3]. In
this paper, we show how the comprehensive descriptions of
the world (domain descriptions) can be generated on the fly
from the continuous robot’s memory. Sensor data are mapped
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Fig. 1. System architecture.

to symbolic representations required for linking the senso-
rimotor experience of the robot to language understanding
and planning.

We also introduce a natural language understanding (NLU)
framework that allows us to generate goals for the planner
as well as symbolic descriptions of the world and human
actions given human spoken utterances. The framework is
intended for a flexible multi-purpose human-robot commu-
nication. For example, if a robot’s plan execution is failing
because a required object is missing, we want to be able
to communicate the location of this or an alternative object
through natural language. In addition to the vision-based
action recognition, we want to be able to comment on human
actions using speech.

Natural language (NL) provides an effective tool for
untrained users to interact with robots in an intuitive way,
which is especially important for robots intended to perform
collaborative tasks with people. One of the major challenges
in application of NLU to robotics concerns grounding am-
biguous NL constructions into actions, states, relations, and
objects known to the robot. For example, the commands
Bring the milk from the fridge, Bring the milk. It’s in
the fridge, Take the milk out of the fridge all imply that
the milk is located in the fridge. Similarly, embedding the
sensorimotor experience of the robot is crucial for under-
standing NL utterances. For example, if the robot is holding
a cup, then it should interpret the command Put the cup
down as probably referring to the cup it is holding rather



than any other cup. Another important issue concerns the
functionality of NL. Most of the literature on NLU for
robotics focuses on instruction interpretation. At the same
time, NL in human-robot interaction can also be used for
describing the world, commenting on human actions, giving
feedback, etc. These types of communication are especially
important when performing collaborative tasks and in the
situations when the robot cannot access the world state
by using sensors. The proposed framework treats multiple
types of NL input (commands, descriptions of the world and
human actions) and interacts with related components such
as the robot’s memory, a planner, and a plan recognizer. It
performs grounding of the symbolic representations into the
sensorimotor experience of the robot and supports complex
linguistic phenomena, such as ambiguity, negation, anaphora,
and quantification without requiring training data.

We test the domain description generation and NLU on
the humanoid robot ARMAR-III [4] in a scenario requiring
planning and plan recognition based on human-robot com-
munication.

The paper is structured as follows. After presenting the
general system architecture in Sec. II, we describe the
domain description generation from the robot’s memory
(Sec. III). Sec. IV introduces the natural language under-
standing pipeline. Sec. V briefly presents the planner and the
plan recognizer employed in this study. Sec. VI discusses
how plan execution and monitoring are organized in our
framework. Experiments on the humanoid robot ARMAR-
III are presented in Sec. VII. Related work is discussed in
Sec. VIII. Section IX concludes the paper.

II. SYSTEM ARCHITECTURE

Fig. 1 shows the system architecture realized within the
robot development environment ArmarX [5]. The system
consists of six major building blocks: robot’s memory, do-
main generation, NL understanding, plan recognition, plan-
ning, as well as plan execution and monitoring.

Domain descriptions are generated from the robot’s mem-
ory (Sec. III). The robot’s memory is represented within
MemoryX, one of the main components of ArmarX. The
domain description is used by the NL understanding com-
ponent for grounding and generating the domain knowledge
base (Sec. IV) as well as by the planner (Sec. V). The devel-
oped multi-purpose NLU framework can distinguish between
a) direct commands that can be executed without planning
(Move to the table), b) plan requiring commands that are
converted into planner goals, which are processed by a
planner (Set the table), c) descriptions of human actions that
are used by a plan recognizer that recognizes human plans
and generates corresponding robot goals further processed
by the planner (I’m grasping the knife), d) descriptions of
the world that are added to the robot’s memory and used by
both the plan recognizer and the planner (The cup is on the
table), see Sec. IV. Plan execution is performed by the plan
execution and monitoring component, which also verifies if
the plan is executed correctly (Sec. VI). Each time an NL
utterance is registered and processed by the NLU pipeline,

the planner, and the plan recognizer, the robot’s memory is
updated and the required actions are added to the task stack
to be processed by the plan execution component. Human
comments can thus be used to update the world state in the
robot’s memory before or during action execution and are
considered by the robot to adjust its plan accordingly.

III. GENERATION OF DOMAIN DESCRIPTIONS
FROM ROBOT’S MEMORY

The challenge of mapping sensor data to symbolic repre-
sentations lies in the diversity of each specific mappings, i.e.
each symbol depends on a different combination of sensor
data. We approach this challenge by designing the mapping
procedure in a modular way. First, sensorimotor experi-
ence is processed and turned into continuous sub-symbolic
representations (e.g., coordinates of objects, the robot, and
robot’s hands) that are added to the robot’s memory. These
continuous representations are mapped to object and location
names or predicates. Finally, representations describing the
world state are generated.

A. Memory Structure

The robot development environment employed in the
described study contains a biologically inspired framework
for storing and representing robot’s knowledge [5]. In the
described framework, the memory architecture MemoryX
consists of the prior knowledge, the long-term memory,
and the working memory that provide symbolic entities like
actions, objects, states, and locations. The basic elements
of the memory called memory entities are represented by
name-value maps. The prior knowledge contains persistent
data inserted by the developer that the robot could not
learn by itself like accurate object 3D models [6]. The
long-term memory consists of knowledge that has been
stored persistently, e.g., common object locations that are
learned from the robot’s experience during task execution and
persistently stored as heat maps [7]. The working memory
contains volatile knowledge about the current world state,
e.g., object existence and position or relations between
entities. The working memory is updated by external com-
ponents like the robot self-localization, object localization,
or natural language understanding, whenever they receive
new information. To account for uncertainties in sensor-data,
each memory entity value is accompanied by a probability
distribution. In case of object locations, new data is fused
with the data stored in the memory using a Kalman-filter.

B. Mapping sensorimotor data to symbols

In this work, self-localization, visual object recognition,
and kinematics of the robot where used for mapping senso-
rimotor experience to symbols. For the self-localization, we
use laser-scanners and a representation of the world as a 2D
map. The self-localization is used to navigate on a labelled
2D graph, in which location labels are associated with center
coordinates and a radius. For visual object recognition, we
use RGB stereo vision with texture-based [8] or color-based
[6] algorithms.



Fig. 2. Components involved in the domain description generation.

The conversion of continuous sensor data into discrete
symbolic data is done by predicate providers. Each world
state predicate is defined in its own predicate provider
component, which outputs a predicate state (unknown, true,
or false) by evaluating the content of the working mem-
ory or low-level sensorimotor data. In the experiment de-
scribed below, we use the following predicate providers:
grasped represents an object being held by an agent using
a hand; objectAt and agentAt represent object and
robot locations, correspondingly; leftgraspable and
rightgraspable represent the fact that an object at a cer-
tain location can be grasped by the corresponding hand of the
robot. Predicate providers can access other components (e.g.,
the working memory, robot kinematics, long-term memory)
to assess the predicate state. For example, the objectAt
predicate provider uses the distance between the detected
object coordinates and the center coordinates of the location
label.

Only those objects that are required for fulfilling a par-
ticular task are recognized during action execution. High-
level components operating on a symbolic level generate
requests for a particular object to be recognized at a particular
locations. Other objects are not tracked to avoid false positive
object recognition.

C. Domain Description Generation

The information contained in the robot’s memory is used
to generate a symbolic domain description consisting of
static symbol definitions and problem specific definitions,
see Fig. 2. The symbol definitions consist of types, con-
stants, predicate definitions, and action descriptions, while
the problem definitions consist of the symbolic representation
of the current world state defined by predicates. Types
enumerate available agents, hands, locations, and object
classes contained in the prior knowledge. Constants represent
actual instances, on which actions can be performed, and are
therefore generated by using entities in the working memory.
Each constant can have multiple types, such that one is
the actual class of the corresponding entity, and others are
parents of that particular class including transitive parentship.
For example, instances of the type cup are also instances of
graspable and object.

For some objects, the robot might not know yet where
they are located, but their locations need to be defined

for the planner to plan actions on them. In such cases,
the domain generator uses the long-term memory to make
assumptions about possible object locations. The domain
generator derives action representations from the long-term
memory, where they are associated with specific robot skills
represented by statecharts [5].

The generated domain description is used by the NLU
component as well as by the planning component. The NLU
component uses domain descriptions to create a knowledge
base and to ground NL references. The planning component
uses it as the knowledge base for finding plans.

IV. MULTI-PURPOSE NL UNDERSTANDING

We intend to a) ground NL utterances to actions, objects,
and locations stored in the robot’s memory, b) distinguish
between commands, descriptions of the world, and descrip-
tions of human actions, c) generate representations of each
type of the NL input suitable for the downstream compo-
nents (planner, plan recognizer, action execution component).
Our approach is based on the abductive inference, which
can be used for interpreting NL utterances as observations
by linking them to known or assumed facts, cf. [9]. The
NL understanding pipeline shown in Fig. 3 consists of
the following processing modules. The text produced by a
speech recognition component1 is processed by a semantic
parser that outputs a logical representation of the text.
This representation together with observations stored in the
robot’s memory and the lexical and domain knowledge base
constitute an input for an abductive reasoning engine that
produces a mapping to the domain. The mapping is further
classified and post-processed. The pipeline is flexible in the
sense that each component can be replaced by an alternative.
We use the implementation of the abduction-based NLU that
was developed in the context of knowledge-intensive large-
scale text interpretation [11].

Text
blabla 
blabla

a(x) ^ c(x,y) goal#a(x) ^ 
world#b(y)

goal:a(x)
world:b(y)
human:c(z)
command:d(x)

Fig. 3. Natural language understanding pipeline.

A. Logical form

We use logical representations of NL utterances as de-
scribed in [12]. In this framework, a logical form (LF) is a
conjunction of propositions and variable inequalities, which
have argument links showing relationships among phrase
constituents. For example, the following LF corresponds to
the command Bring me the cup from the table:

1In the experiments described in this paper, we used the speech recogni-
tion system presented in [10].



∃e1, x1, x2, x3, x4 (bring-v(e1, x1, x2, x3) ∧ thing(x1) ∧ per-
son(x2) ∧ cup-n(x3) ∧ table-n(x4) ∧ from-p(x3, x4)),

where variables xi refer to the entities thing, person, cup,
and table, whereas variable e1 refers to the eventuality of
x1 bringing x2 to x3; see [12] for more details. In the
experiments described below, we used the Boxer parser [13].
Alternatively, any dependency parser can be used if it is
accompanied by an LF converter as described in [14].

B. Abductive inference

Abduction is inference to the best explanation. Formally,
logical abduction is defined as follows:

Given: Background knowledge B, observations O, where
both B and O are sets of first-order logical formulas,
Find: A hypothesis H such that H ∪ B |= O,H ∪ B 6|=⊥,
where H is a set of first-order logical formulas.

Abduction can be applied to discourse interpretation [9].
In terms of abduction, logical forms of the NL fragments
represent observations, which need to be explained by the
background knowledge. Where the reasoner is able to prove
parts of the LF, it is anchoring it in what is already known
from the overall context or from the background knowledge.
Where assumptions are necessary, it is gaining new infor-
mation. Suppose the command Bring me the cup from the
table is turned into an observation oc. If the robot’s memory
contains an observation of a particular instance of cup being
located on the table, this observation will be concatenated
with oc and the noun phrase the cup will be grounded to
this instance by the abductive reasoner.

We use a tractable implementation of abduction based
on Integer Linear Programming (ILP) [11]. The reasoning
system converts a problem of abduction into an ILP prob-
lem, and solves the problem by using efficient techniques
developed by the ILP research community. Typically, there
exist several hypotheses explaining an observation. In the
experiments described below, we use the framework of
weighted abduction [9] to rank hypotheses according to
plausibility and select the best hypothesis. This framework
allows us to define assumption costs and axiom weights
that are used to estimate the overall cost of the hypotheses
and rank them. As the result, the framework favors most
economical (shortest) hypotheses as well as hypotheses that
link parts of observations together and support discourse
coherence, which is crucial for language understanding, cf.
[15]. However, any other abductive framework and reasoning
engine can be integrated into the pipeline.

C. Lexical and domain knowledge base

In our framework, the background knowledge B is a set
of first-order logic formulas of the form

Pw1
1 ∧ ... ∧ Pwn

n → Q1 ∧ ... ∧Qm,

where Pi, Qj are predicate-argument structures or variable
inequalities and wi are axiom weights.2

2See [14] for a discussion of the weights.

Lexical knowledge used in the experiments described
below was generated automatically from the lexical-semantic
resources WordNet [16] and FrameNet [17]. First, verbs and
nouns were mapped to the synonym classes. For example, the
following axiom maps the verb bring to the class of giving:

action#give(e1, agent, recipient, theme) →
bring-v(e1, agent, theme) ∧ to-p(e1, recipient)

Prepositional phrases were mapped to source, location,
instrument, etc., predicates. Different syntactic realizations
of each predicate for each verb (e.g., from X, in X, out of X)
were derived from syntactic patterns specified in FrameNet
that were linked to the corresponding FrameNet roles. See
[18] for more details on the generation of lexical axioms. A
simple spatial axiom was added to reason about locations,
which states that if an object is located at a part of a location
(corner, top, side, etc.), then it is located at the location.

The synonym classes were further manually axiomatized
in terms of domain types, predicates, constants, and actions.
For example, the axiom below is used to process construc-
tions like bring me X from Y:

goal#inHandOf (theme,Human) ∧
world#objectAt(theme, loc) →
action#give(e1, Robot, recipient, theme) ∧
location#source(e1, loc),

which represents the fact that the command evokes the goal
of the given object being in the hand of the human and
the indicated source is used to describe the location of the
object in the world. The prefixes goal# and world# indicate
the type of information conveyed by the corresponding lin-
guistic structures. The framework can also handle numerals,
negation, quantifiers represented by separate predicates in the
axioms (e.g., not, repeat). The repetition, negation, and quan-
tification predicates are further treated by the post-processing
component. The hierarchy axioms (red cup→cup) and
inconsistency axioms (red cup xor green cup) were
generated automatically from the domain descriptions.

D. Object grounding

If objects are described uniquely, then they can be directly
mapped to the constants in the domain. For example, the
red cup in the utterance Give me the red cup can be
mapped to the constant red cup if there is only one red
cup in the domain. However, redundant information that
can be recovered from the context is often omitted in the
NL communication, cf. [19]. In our approach, grounding
of underspecified references is naturally performed by the
abductive reasoner interpreting observations by linking their
parts together, cf. Sec. IV-B. For example, given the text
fragment The red cup is on the table. Give it to me, the
pronoun it in the second sentence will be linked to red
cup in the first sentence and grounded to red cup. To
link underspecified references to earlier object mentions in a
robot-human interaction session, we keep all mentions and
concatenate them with each new input LF to be interpreted.
Predicates describing the world from the robot’s memory



are also concatenated with LFs to enable grounding. Given
Bring me the cup from the table, the reference the cup from
the table will be grounded to an instance of cup observed
as being located on an instance of table.

If some arguments of an action remain underspecified or
not specified, then the first instance or the corresponding type
will be derived from the domain description. For example,
the execution of the action of putting things down requires a
hand to be specified. In the NL commands this argument
is often omitted (Put the cup on the table), because for
humans it does not matter, which hand the robot will use.
The structure putdown(cup,table,hand) is generated
by the NLU pipeline for the first command above. The
grounding function then selects the first available instance
of the underspecified predicate. In future, we consider using
a clarification dialogue, as proposed, for example, in [20].

E. Classifier

The classifier takes into account prefixes assigned to the
inferred predicates. For example, the abductive reasoner
returned the following mapping for the command Bring me
the cup from the table:

action#give(e1, x1, x2, x3) ∧ location#source(e1, x4) ∧ x1 =
Robot ∧ x2 = Human ∧ goal#inHandOf (x3, Human) ∧
world#objectAt(x3, x4)

The classifier extracts predicates with prefixes and predi-
cates related to the corresponding arguments. The following
structures will be produced for the mapping above:

[goal: inHandOf(cup,Human),

world: objectAt(cup,table)]

Actions that do not evoke goals or world descriptions
are interpreted by the classifier as direct commands or
human action descriptions depending on the agent. For
example, action#grasp(Human,cup) (I’m grasping the cup)
will be interpreted as a human action description, while ac-
tion#grasp(Robot,cup) (Grasp the cup) is a direct command.

The classifier can also handle nested predicates. For exam-
ple, the utterances 1) Help me to move the table, 2) I will help
you to move the table, 3) I will help you by moving the table
will be assigned the following structures, correspondingly:

1) [direct command: helpRequest:[requester:
Human, action: move(Robot,table)]

2) [human action: help:[helpInAction:
move(Robot,table)]

3) [human action: help:[helpByAction:
move(Human,table)]

F. Post-processing

The post-processing component converts the extracted
data into the format required by the downstream modules.
The direct commands are immediately processed by the
Plan Execution Monitor. Goals extracted from utterances are
converted into a planner goal format, so that not predicate
is turned into the corresponding negation symbol, predicates
that need multiplication (indicated by the repeat predicate)
are multiplied, and quantification predicates are turned into

Plan Execution Monitor

Fig. 4. Plan generation, execution, and monitoring.

quantifiers. For example, the commands 1) Put two cups on
the table and 2) Put all cups on the table can be converted
into the following goal representations in the PKS syntax
[21], correspondingly:

1) (existsK(?x1: cup, ?x2: table)
K(objectAt(?x1,?x2)) & (existsK(?x3:
cup) K(objectAt(?x3,?x2)) & K(?x1 !=
?x3)))

2) (forallK(?x1: cup) (existsK(?x2: table)
K(objectAt(?x1,?x2))))

Similarly, human action descriptions are converted into the
format required by the plan recognizer.

V. PLANNING AND PLAN RECOGNITION

We define a plan as a sequence of actions P = 〈a1, .., an〉
with respect to the initial state s0 and the goal G such that
〈s0, P 〉 |= G. In the experiments described in Sec. VII, we
used the PKS planner [21], which takes a domain description
(Sec. III) and a goal (Sec. IV) represented in the PKS syntax
as input and returns sequences of grounded actions with their
pre- and post-conditions.

In the described experiments, we employed the probabilis-
tic plan recognizer ELEXIR [22] that takes grounded human
actions and domain descriptions in the ELEXIR syntax as
input and computes the conditional probability of a particular
human goal given the set of the human actions Pr(g|obs).

We use the plan recognizer for recognizing human plans
given observed human actions obtained by employing visual
action recognition or NL understanding (when actions are
commented). The recognized human plan triggers a scenario
such that it is mapped to the tasks that the robot can perform
to help the human to achieve their goal. Thus, the recognized
human plan is mapped to a possible robot goal that is further
transferred to the planner for generating a robot plan.

VI. PLAN EXECUTION AND MONITORING

The components described in the previous sections are
employed by the Plan Execution Monitor component. The
Plan Execution Monitor (PEM) is the central coordination
unit for the execution of commands. A simplified control
flow for execution of a planning task is shown in Fig. 4. To
trigger PEM, a new task is sent from an external component
(e.g., NLU component). Different types of tasks are accepted.
For each type of task, PEM has an implementation of an
ControlMode interface, which knows how to execute this task
type. Currently, a task can be a single command or a list of



Fig. 5. Visualization of the robot’s working memory during action
execution and the current camera image.

goals that should be achieved. Here, we are focusing on the
goal task type, which requires the planner to achieve the goal.
After a new task was received, PEM calls DomainGenerator
to generate a new domain description based on the current
world state (Sec. III). This domain together with the received
goal are then passed to the planner. If a plan could not be
found, PEM synthesizes a feedback indicating the failure. A
successful plan consists of a sequence of actions with bound
variables passed back to PEM. These actions are executed
one by one. Each action is associated with an ArmarX
statechart [5], which controls the action execution. Action
execution might fail because of uncertainties in perception
and execution or changes in the environment. To account for
the changes, preconditions of an action before the execution
and its effects after the execution are verified by PEM.
The world state is continuously updated. Fig. 5 shows the
visualization of the robot working memory and the current
camera image as seen by the robot. The world state observer
component is queried for the current world state after each
action. If any mismatches between a planned world state and
a perceived world state are detected, the plan execution is
considered to have failed and re-planning is triggered based
on the current world state. Additionally, the statecharts report
if they succeeded or failed; failing leads to re-planning. If an
action was successfully executed, the next action is selected
and executed. After the task completion the robot goes idle
and waits for the next task.

VII. EXPERIMENTS

We tested our approach on the humanoid robot ARMAR-
III [4] in a kitchen environment. In these experiments, robot
skills were restricted to three primitive actions: moving,
grasping, and placing. As shown in the accompanying video3,
the human agent asks the robot to help him to set the table for
two people. The execution of the uttered command requires
generation of a multi-step plan. The robot is supposed to
generate a plan resulting in putting two cups on the table,
while the human agent puts forks, knifes, and plates on
the table. The task description is provided by the NLU
component. The domain description is generated from the

3http://youtu.be/87cbivmjfe8

Output type Baseline NLU pipeline
C P I A C P I A

Planner goal 48 18 44 .66 56 25 19 .81
Human actions 43 24 33 .67 57 29 14 .86

World state 61 1 38 .62 88 1 11 .89
Total 152 43 115 .65 201 55 44 .85

TABLE I
NLU EVALUATION RESULTS.

robot’s memory. The task and domain descriptions constitute
the input for the PKS planner, which generates a plan. The
execution of the plan is monitored by the Plan Execution
Monitor. The same set of actions can be triggered using plan
recognition. The human agent starts setting the table and
comments his actions (I’m putting a fork on the table). The
robot recognizes the plan of the human agent and generates
its own plan to help set the table, which involves putting the
cups on the table. Finally, the human agent asks the robot
to put a juice on the table. Given its memory, the robot has
an assumption about the location of the juice. The planner
generates a corresponding plan. The plan execution fails,
because the juice cannot be found at the assumed location.
The human agent suggests another location by saying: The
juice is at the dishwasher. The robot updates its memory,
re-plans, and executes the new plan. The video demonstrates
a human-robot collaboration scenario. The robot not only
generates and executes a plan given a human command, but
adjusts it’s plan during execution given new descriptions of
the world and human actions.

In order to check, if our NLU framework can successfully
handle the variability of natural language, we ran three
experiments using the Amazon Mechanical Turk platform.4

In the first experiment, subjects were presented with an
image of a table set for two people and the following
task description: Imagine you want to have a dinner with
a friend. Write a short command you would say to the
robot to obtain the result shown in the image. In the second
experiment, subjects were presented with a video showing a
person putting a fork and a knife on the table and the task
description: Imagine it’s you performing the actions shown
in the video. Describe the actions using the personal pronoun
”I”. In the third experiment, subjects were presented with a
video showing a robot not finding a cup, which was located
on the table, and the task description: The robot in the video
cannot find the green cup. Tell the robot where the cup is
located. 100 subjects were employed for each task.

Each of the 300 obtained utterances was processed by
our NLU pipeline. We aimed at evaluating the correctness
of the extracted goals, human action descriptions, and state
of the world descriptions. We estimated the accuracy as
the percentage of the correct and partially correct outputs.
The results presented in Table I show the number of cor-
rect (C), partially correct (P), or incorrect outputs (I) as
well as the accuracy (A) of a baseline method and the
presented approach. As a baseline method, we extracted

4https://www.mturk.com



tuples 〈verb, agent, object, location, number〉 from parsed
utterances, such that agent is the subject of verb, object is
its direct object, location is the noun related to verb by a
location preposition, and number is a numeral modifying
object or related to verb by the preposition for. The tuples
were mapped to goals, human action, and world state repre-
sentations using a lookup table.

The overall baseline accuracy is .65, while the accuracy
of the proposed approach is .85. The baseline method was
unable to ground underspecified references, e.g., it in Get
the green cup! It is on the table, which the abduction-
based method was able to do, cf. Sec. IV-D. The domain
and spatial axioms lacking in the baseline method also gave
advantages to the abduction-based approach. Most of the
errors of the abduction-based method resulted from a wrong
parse. Processing of some of the utterances required deeper
knowledge to make a correct inference. For example, our
system did not recognize that the utterance Robot, tonight I
will dine with a friend, please set the table implies that the
table should be set for two. For human action descriptions,
the errors were related to spatial inference. For example,
given I place the knife on the table. I place the fork to
the left of the knife, our system did not recognize that the
knife is being placed on the table. For world descriptions,
the errors were related to deictic expressions, e.g. The cup
is very straight to you, come forward.

VIII. RELATED WORK

a) Grounding NL: Approaches to grounding NL into
actions, relations, and objects known to the robot can be
roughly subdivided into symbolic and statistical. Symbolic
approaches rely on sets of rules to map linguistic construc-
tions into pre-specified action spaces and sets of environ-
mental features. In [23], simple rules are used to map NL
instructions having a pre-defined structure to robot skills and
task hierarchies. In [24], NL instructions are processed with
a dependency parser and background axioms are used to
make assumptions and fill the gaps in the NL input. In [25],
background knowledge about robot actions is axiomatized
using Markov Logic Networks. In [26], a knowledge base of
known actions, objects, and locations is used for a Bayes-
based grounding model. Symbolic approaches work well
for small pre-defined domains, but most of them employ
manually written rules, which limits their coverage and
scalability. In order to increase the linguistic coverage, some
of the systems use lexical-semantic resources like WordNet,
FrameNet, and VerbNet [27], [25]. In this study, we follow
this approach and generate our lexical axioms from Wordnet
and FrameNet.

Statistical approaches rely on annotated corpora to learn
mappings between linguistic structures and grounded predi-
cates representing the external world. In [28], reinforcement
learning is applied to interpret NL directions in terms of
landmarks on a map. In [29], machine translation is used
to translate from NL route instructions to a map of an
environment built by a robot. In [30], Generalized Grounding
Graphs are presented that define a probabilistic graphical

model dynamically according to linguistic parse structures.
In [19], a verb-environment-instruction library is used to
learn the relations between the language, environment states,
and robotic instructions in a machine learning framework.
Statistical approaches are generally better at handling NL
variability. An obvious drawback of these approaches is
that they generate noise and require a significant amount of
annotated training data, which can be difficult to obtain for
each new application domain and set of action primitives.

Some recent work focuses on building joint models ex-
plicitly considering perception at the same time as parsing
[31], [32]. The framework presented in this paper is in line
with this approach, because abductive inference considers
both the linguistic and perceptual input as an observation to
be interpreted given the background knowledge.

b) Planning: With respect to the action execution, the
existing approaches can be classified into those directly
mapping NL instructions into action sequences [33], [34],
[25] and those employing a planner [35], [27], [24], [36].
We employ a planner, because it allows us to account for
the dynamically changing environment, which is essential for
the human-robot collaboration. Similar to [36], we translate
a NL command into a goal description.

c) Type of NL input: Although most of the NLU
systems in robotics focus direct on instruction interpreta-
tions, there are a few systems detecting world descriptions
implicitly contained in human commands [24], [37], [26].
These descriptions are further used in the planning context,
as it is done in our approach. In addition, we detect world
descriptions not embedded into the context of an instruction
and process human action descriptions.

d) Linking planning, NL, and sensorimotor experience:
Interaction between NL instructions, resulting symbolic
plans, and sensorimotor experience during plan execution has
been previously explored in the literature. In [33], symbolic
representations of objects, object locations, and robot actions,
are mapped on the fly to the sensorimotor information.
During the execution of the predefined plans, the plan
execution monitoring component evaluates the outcome of
each robot’s action as success or failure. In [24], the planner
knowledge base is updated each time a NL instruction related
to the current world state is provided and the planner re-
plans taking into consideration the new information. In [35],
symbolic planning is employed to plan a sequence of motion
primitives for executing a predefined baking primitive given
the current world state. In line with these studies, plan
execution monitoring is a part of our system.

IX. CONCLUSIONS AND FUTURE WORK

We presented a symbolic framework for integrating sen-
sorimotor experience, natural language understanding, and
planning in a robotic architecture. We showed how domain
descriptions can be generated from the robot memory and
introduced an abduction-based NLU pipeline processing dif-
ferent types of linguistic input and interacting with related
components such as the robot’s memory, a planner, and a
plan recognizer. The experimental results suggest that the



developed framework is flexible enough to process the input
of untrained users and that the interaction with the human in
the scenario setting allows the robot to successfully perform
the task.

The main limitation of the proposed NLU framework
concerns the need to define the domain mapping rules
manually (Sec. IV-C). We plan to approach this limitation by
employing bootstrapping from unannotated corpora to learn
command-goal relations that are represented by the causation
relations in texts, e.g. setting the table causes cups being on
the table, cf. [38].

Concerning the domain description generation, the future
work includes incorporating more information into predicate
providers like, for example, object shapes or tactile sensor
feedback. Another future improvement concerns switching
from static predicate providers to dynamic ones that could
access action outcomes and learn from successful and failed
actions. Both these extensions can potentially to improve
robustness and precision of the sensor-to-symbol mapping.
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“The ArmarX Framework - Supporting high level robot programming
through state disclosure,” Information Technology, vol. 57, no. 2,
pp. 99–111, 2015.

[6] P. Azad, D. Münch, T. Asfour, and R. Dillmann, “6-dof model-based
tracking of arbitrarily shaped 3d objects,” in Proc. of ICRA, pp. 5204–
5209, 2011.

[7] K. Welke, P. Kaiser, A. Kozlov, N. Adermann, T. Asfour, M. Lewis,
and M. Steedman, “Grounded spatial symbols for task planning based
on experience,” in Proc. of Humanoids, pp. 484–491, 2013.

[8] T. A. P. Azad and R. Dillmann, “Combining harris interest points and
the sift descriptor for fast scale-invariant object recognition,” in Proc.
of IROS, pp. 4275–4280, 2009.

[9] J. R. Hobbs, M. E. Stickel, D. E. Appelt, and P. A. Martin, “Inter-
pretation as abduction,” Artif. Intell., vol. 63, no. 1-2, pp. 69–142,
1993.
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