
Chapter 11

Interactive Graphical Software for Teaching the
Formal Foundations of Head-Driven Phrase
Structure Grammar1

FRANK RICHTER, EKATERINA OVCHINNIKOVA, BEATA TRAWIŃSKI, W. DET-
MAR MEURERS

ABSTRACT. Here we will present a graphical software tool called Morph Moulder (MoMo) for
teaching the formal foundations of a language with a denotation in a domain of relational typed
feature structures as used in Head-Driven Phrase Structure Grammar. With MoMo, students
learn the properties of totally well-typed, sort resolved relational feature structures, the use of
formal languages to describe typed feature structures and the notions of constraint satisfaction
and models of grammars written in a formal language. MoMo was realized and conceived within
the context of a set of courses in the format of web-based training, that focuses on the concept
of typed feature structures in a curriculum in grammar formalisms and parsing. The formal
language of MoMo amends the constraint language of TRALE (an implementation platform for
HPSG grammars based on ALE) to accommodate the expressive power of HPSG.

11.1 Motivation

Head-Driven Phrase Structure Grammar is one of the mathematically most rig-
orously developed grammar formalisms, currently in use in computational and in
theoretical linguistics. Many educational institutions offer a variety of courses in
HPSG from many different perspectives. Prominent among them are general intro-
ductory courses for modern formal syntactic theories, courses on issues of analyses
of linguistic phenomena in and across particular languages, and grammar develop-
ment and implementation courses. Even more specialized courses focus on the
formal foundations in the logic of typed feature structures or more general logical
frameworks such as RSRL (Richter, 2000). The nature of these courses and the
way in which they refer to the main concepts underlying HPSG can easily differ
so much as to make it very difficult for students to see the common ground under-
lying grammar implementation on a particular implementation platform, linguistic
analyses in purely theoretical HPSG grammars, and the design of various pars-
ing algorithms based on different approaches to processing HPSG-style grammars.

1We are grateful to Carmella Payne for help with the challenges of English.
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The problem increases upon considering the diverse backgrounds of the students
themselves, whose backgrounds may be a range of the areas of computer science,
knowledge representation, artificial intelligence and linguistics, in any combination
of these subjects.

The Morph Moulder (MoMo), discussed in this paper, is an educational soft-
ware tool for the graphical exploration of the formal foundations of typed feature
logic as used in the formalization of grammars written in the HPSG framework.
A key idea behind the system of courses built around MoMo is to use the theme
of feature structures as the unifying focal point of a set of compatible and freely
combinable course modules on topics as diverse as syntactic theory, parsing, math-
ematical foundations of linguistic theory and feature logics. The purpose of MoMo
in this setting is to provide the necessary introduction and common ground for a po-
tentially diverse student audience. To make the abstract mathematical nature of the
topic more accessible, MoMo projects the formality of its subject, the formal foun-
dations of constraint languages over typed feature structures, onto a graphical level
at which it can be grasped more intuitively by novices. Working with the graphical
interface, students gain a firm intuitive understanding of the basic concepts be-
fore they are confronted with abstract mathematical definitions. On the graphical
level, they can rely on prior world knowledge in drawing connected, well-formed
structures. Moreover, an interactive graphical interface can be much more easily
adapted to individual learning paths through the course material. It is thus possible
for the individual learners to focus on those aspects of the material that are new
to them while skipping familiar ones. We expect that prior knowledge in the area
of logical languages will differ rather drastically between computer scientists and
linguists, for example.

After acquiring a thorough understanding on an intuitive level of what HPSG
grammars are and how they are interpreted, students will find it much easier to
grasp the mathematical definitions of the underlying concepts, and we can then
directly introduce the new jargon of the intuitively well-understood ideas. The
mathematical definitions make previously implicit knowledge explicit. The firm
grounding of the course in the foundations of HPSG in a formal language inter-
preted over a domain of totally well-typed, sort resolved relational feature struc-
tures will give us a common point of reference for all later specializations in our
system of courses in grammar formalisms and parsing. We thus achieve a com-
prehensive and still coherent set of teaching material that covers various topics in
HPSG, all grouped around the focal point of feature structures. It includes math-
ematical foundations of linguistics, grammar development, grammar implementa-
tion and design, and constraint-based parsing.

MoMo is being developed as a module in a web-based course in Grammar
Formalisms and Parsing, funded by the German Federal Ministry for Research
Technology (BMBF) as part of the consortium Media-intensive teaching modules
in the computational linguistics curriculum (Medienintensive Lehrmodule in der
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Computerlinguistik-Ausbildung, MiLCA).2

11.2 The Morph Moulder

The MoMo tool allows the user to explore the relationship between the two levels
of the formal architecture of HPSG: the descriptions and the elements described.
To this end, the user works with a graphical interface on a whiteboard. Labeled
graphs representing totally well-typed and sort resolved relational feature struc-
tures can be constructed on the whiteboard from their basic components, nodes
and arcs. The nodes are depicted as colored balls, which are assigned sorts, and the
arcs are depicted as arrows that may be labeled by feature names. Once a feature
structure has been constructed, the user may examine its logical properties. The
three main functions of the MoMo tool allow one to check (1) whether a feature
structure complies with a given signature, (2) whether a well-formed feature struc-
ture satisfies a description or a set of descriptions, and (3) whether a well-formed
feature structure is a model of a description or a set of descriptions. The functions
of MoMo thus lead the user from understanding the well-formedness of feature
structures with respect to a signature to an understanding of feature structures in
their role as a logical model of a theory. If a student has chosen course modules that
include a focus on formal foundations of feature logics or feature logics based lin-
guistic theory, the first introduction to the subject by MoMo can easily be followed
up by a course module with rigorous mathematical definitions.

11.2.1 Signatures

In constraint-based frameworks like HPSG, the user declares the primitives of the
empirical domain in terms of a sort hierarchy with appropriate attributes and at-
tribute values.3 Consider a signature that licenses lists of various animals, which
may then be classified according to certain properties. First of all, the signature
needs to comprise a sort hierarchy and feature appropriateness conditions for lists.
Let sort list be an immediate supersort of the sorts non-empty-list and empty-list in
the sort hierarchy (henceforth abbreviated as nelist and elist). Let the appropriate-
ness conditions declare the attributes HEAD and TAIL appropriate for (objects of)
sort nelist, the values of TAIL at nelist be of sort list, and the values of HEAD at sort
nelist be of sort animal (for lists of animals). Finally no attributes are appropri-
ate for the sort elist. A typical choice for the interpretation—and the one adopted

2See http://milca.sfs.nphil.uni-tuebingen.de/ for the main MiLCA pages and
http://milca.sfs.uni-tuebingen.de/A4/index.html for the pages of the subproject Grammar For-
malisms and Parsing. MoMo is implemented in Java by Ekaterina Ovchinnikova.

3Following most of the linguistic HPSG literature in the tradition of Pollard and Sag (1994), we
will talk of sort hierarchies instead of type hierarchies, which is the usual term for the same concept
in computer science. Pollard and Sag use the term type for a different concept in their book, namely
for distinguishing utterance tokens from utterance types. This is a good example of the many gaps
between the cultures of linguistics and computer science that our system of courses strives to bridge.
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here—of that kind of signature in constraint-based formalisms is the collection of
totally well-typed and sort resolved feature structures. All nodes of totally well-
typed and sort resolved feature structures are of a maximally specific sort (sorts
with no subsorts); and they have outgoing arcs for all and only those features that
are appropriate to their sort, with the feature values again obeying appropriateness.
Our signature for lists thus declares an ontology of feature structures with nodes of
sort nelist or elist (but never of sort list), where the former must bear the outgoing
arcs HEAD and TAIL, and the latter have no outgoing arcs. They signal the end of
the list. The HEAD values of non-empty lists must be in the denotation of the sort
animal.

type_hierarchy
bot
list

nelist head:animal tail:list
elist

animal legs:number color:color
bird legs:two
parrot
woodpecker
canary

pet legs:four
cat
dog

number
two
four

color
green
yellow
brown

relations
totheright/3
member/2
.

Figure 11.1: An HPSG signature in MoMo notation

Figure 11.1 shows a complete signature from a course using the MoMo tool that
comprises the declarations for lists we have just discussed. A signature in MoMo
starts with the declaration type hierarchy and a top sort which is canonically called
bot.4 The subsort relationship is indicated by indentation: list, animal, number and
color are the immediate subsorts of bot. Appropriate attributes and attribute values
are listed in the line behind each sort. In accordance with the HPSG formalism,

4The convention for naming the top sort of linguistics bottom once more derives from computer
science. In linguistics, the convention of calling it top derives from the metaphor of thinking about
it as the most general sort that denotes everything. Computer scientists tend to think of it as the least
informative sort and thus call it bottom.
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attributes and attribute values are inherited by subsorts. Since the attribute COLOR

is appropriate for animal, it is appropriate for bird and its subsorts and pet and
its subsorts as well, and its value at these sorts is at least as specific as (the sort)
color. The sort hierarchy proper is followed by the keyword relations in a new line,
which indicates the beginning of the declaration of relation symbols. All relation
symbols that the learner wants to use in descriptions are declared, followed by a
slash and the intended arity of the relations. The present signature declares the
relations member with arity two (which we want to use to express list membership)
and totheright (which we want to use to express that element x occurs to the
right of element y on list z).

Figure 11.2 illustrates how the MoMo tool can be used to study the relationship
between signatures and the feature structures they license by letting the user con-
struct feature structures and interactively explore whether particular feature struc-
tures are well-formed according to the signature. To the left of the whiteboard
there are two clickable graphics consoles of possible nodes and arcs from which
the user may choose to draw feature structures. The consoles offer nodes of all
maximally specific sorts and arcs of all attributes that are declared in the signature.
In the present example of a simple signature declaring lists of animals, parrot,
woodpecker, canary, cat and dog are the maximally specific subsorts of animal.
Animals have one of three possible colors and two or four legs, depending on
whether the animal is a bird or a pet.

Figure 11.2: Well-typedness of feature structures in MoMo

On the whiteboard each color of edge represents a different attribute, and each
color of node represents a different sort. The displaying of attribute and sort labels
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of arcs and nodes can be optionally switched on and off. The grayed outlines on
edges and nodes indicate that all of the respective edges and nodes in this particular
example are licensed by the signature that was provided. The HEAD arc originating
at the node of sort elist, however, violates the appropriateness conditions of the
signature. The feature structure depicted here, therefore, is not well-formed. The
signature check thus fails on the given feature structure, as indicated by the red
light in the upper function console to the right of the whiteboard.5

11.2.2 Feature Structure Checking

Configurations of objects on the whiteboard can violate other well-formedness con-
ditions on totally well-typed and sort resolved feature structures that are indepen-
dent of their well-formedness with respect to a given signature. The button FS
checking allows to check whether the configuration of nodes and arcs on the white-
board conforms to these additional requirements. A well-formed feature structure
must at least have exactly one root node (graphically distinguished by MoMo by a
red circle around the node); and from the root node all other nodes must be reach-
able by traversing the structure along the arcs in the direction of their arrows. Well-
formedness of the depicted feature structure is a precondition for the evaluation of
the truth of descriptions relative to feature structures discussed in the next section.
The configuration of objects of Figure 11.2 illustrating well-formedness with re-
spect to a given signature is actually not a well-formed feature structure, even if we
eliminate the part that violates the signature. The reason for that is that there is no
root node. Feature structure checking thus fails, as shown in Figure 11.3.

Relational feature structures may also violate well-formedness conditions in
their relational extension, which is empty in the present example (but see Sec-
tion 11.2.4).

11.2.3 Descriptions

Similar to signature checking, MoMo can graphically depict satisfiability and mod-
ellability of a single description or set of descriptions. To this end, the user may be
asked to construct a description that a given feature structure satisfies or models;
or she may be asked to construct feature structures that satisfy or model a given
description (or set of descriptions). The system will give feedback on the correct
or incorrect usage of the syntax of the description language as well as on the extent
to which a feature structure satisfies or models descriptions, systematically guiding
the user to correct solutions.

Figure 11.4 shows a successful satisfiability check of a well-formed feature
structure. The feature structure is derived from the one in Figure 11.2 by removing
the incorrect HEAD arc and its substructure from the node of sort elist. Moreover,
the node on the upper left corner, from which all other nodes can be reached by

5Signature checking may also fail in the relational extension as will be discussed in Sec-
tion 11.2.4.
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Figure 11.3: Checking the well-formedness of feature structures

(subsequently) following arcs, is now marked as the root node. Queries are asked in
a special notepad, which provides additional functions such as browsing in, mod-
ifying or creating signatures, browsing in graphs provided with the system, and
browsing in, modifying or creating descriptions. The query in our example asks
whether the feature structure satisfies the constraint (nelist, head: (parrot,
color:green), tail:nelist). This constraint is true of non-empty lists with a
green parrot as first element, followed by more elements.

As the feature structure satisfies the description, the green light on the function
console to the right is signaling succeed, and the feature structure is outlined in
green. If we, instead, enter the above description as a modeling query, the result is
different, as can be seen in Figure 11.5.

The given feature structure does not model the description, since it has nodes
that do not satisfy it. For a feature structure to model a description, each node has to
satisfy it. Figure 11.5 shows that in the case of this particular feature structure, only
the root node satisfies the description, whereas all others do not. For that reason,
they are all marked with black circles, and the red light on the function console is
signaling fail. As we will see below, successful modeling queries will be answered
by a green light on the function console and outlining feature structures in red.

The description language of HPSG is very rich and expressive. Not only does
it provide a means for notating attributes and attribute values, it also provides all
standard logical connectives (with symbols for disjunction, implication and equiv-
alence), including (classically interpreted) negation of complex expressions, exis-
tential and universal quantification over the nodes of feature structures, and rela-
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Figure 11.4: Evaluating constraint satisfaction of feature structures

tional expressions. This is more than what typical feature logics contain as their
syntactic inventory, but it certainly comprises all constructs of less powerful fea-
ture logics. For the purposes of our system of courses, it is most important to note
that the formal language of MoMo is a syntactic and semantic parallel to the con-
straint language of TRALE, an implementation platform for HPSG grammars that
is an extension of ALE and is being developed by Gerald Penn at the University
of Toronto as part of our web-based courses (Haji-Abdolhosseini and Penn, 2002).
In our regular curriculum MoMo thus introduces the student not only to the syntax
and semantics of constraint languages but also to the language that will be used for
the implementation of grammars later in the course.

Similarly, the format for HPSG signatures of MoMo is almost identical to the
format of signatures of TRALE. The only difference is that TRALE does not de-
clare relations and their arity in signatures, since TRALE’s relations are definite
clause attachments in Prolog. The MoMo signature of Figure 11.1 becomes a
TRALE signature by simply deleting the three lines concerning relations before
the full stop at the very end.

With MoMo students learn the language of a formalism specifically designed
to express HPSG grammars in the tradition of Pollard and Sag (1994) completely
and directly. In addition, they learn the formal language of HPSG in a syntax that
is optimized for direct use in computational systems, and they see immediately
which syntactic constructs of the language of HPSG are not currently supported
by efficient implementation platforms. The subset relationship between the con-
straint languages of MoMo and TRALE facilitates a comparison of the meaning
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Figure 11.5: Evaluating model checking of feature structures

of grammars in theoretical HPSG and of implementations of these grammars using
advanced techniques of constraint-based parsing. Finally, their common structure
and properties allows for a tight network of hyperlinks in electronic course ma-
terials across the boundaries of different course modules and course topics, link-
ing them to a common source of mathematical, implementational and linguistic
indices, which explain the usage of common mathematical concepts across the dif-
ferent areas of application of typed feature structures.

11.2.4 Advanced Features

We conclude our discussion of the most important functionalities of MoMo with an
example illustrating the usage of the complete syntax and semantics of the HPSG
formalism in MoMo. In the expressions in (1) and (2), ‘V’ stands for the universal
quantifier, and ‘ˆ’ for the existential quantifier (MoMo notation for quantifiers).

1. VXVY(member(X,Y)<*>
ˆZ(Y:head:X);Y:tail:Z,member(X,Z)).

2. VXVYVZ(totheright(X,Y,Z)<*>ˆW(Z:tail:W,
(Z:head:Y,member(X,W);
totheright(X,Y,W)))).

(1) says that for each X and for each Y in a relational feature structure, X and Y
are in the member relation if and only if either X is the first element of Y or there is
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a list Z that is the tail of Y and X is a member of Z (membership of X on a list Y ).
The relation totheright is the obliqueness relation of HPSG in models of (2). It
says that for each X , Y and Z, they are in the totheright relation if and only if
Y is the first element of list Z and X follows later on the tail of Z; or totheright
holds between X , Y and the tail of Z. In other words, X stands to the right of Y on
list Z. Figure 11.6 shows a relational feature structure that models the expressions
in (1) and (2), since all the nodes have been entered in the relations as required
by those two constraints. In other words, the member relation and the to-the-right
relation are modeled as one would intuitively understand them. MoMo visualizes
relations by first automatically assigning names composed of a letter and a number
to the nodes. The relation field of the feature structure in the lower part of the
whiteboard then shows the tuples of nodes that are in the relations by displaying
the names of the nodes in the tuples. In Figure 11.6, the learner has correctly put
〈A1,A0〉,〈A10,A0〉,〈A7,A0〉,〈A7,A2〉,〈A10,A2〉,〈A10,A3〉 into member.

Figure 11.6: Model checking for a feature structure with nonempty relations

Finally, Figure 11.6 reveals other important properties of MoMo’s treatment of
(relational) feature structures. First of all, multiple feature structures may be on
the whiteboard simultaneously, and they are all checked for well-formedness and
their properties relative to a given (set of) description(s). Since feature structures
may be evaluated relative to a set of descriptions as well as to just one descrip-
tion, it can in effect be checked whether a set of feature structures models a set of
constraints under a given signature. But this is nothing but checking if some set
of feature structures is in the denotation of a grammar. Furthermore, MoMo rec-
ognizes which nodes on the screen are connected by arcs, and it assigns names to
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the nodes accordingly. Nodes with the same letter in their name belong to a single
feature structure. This is relevant for the relational extension of the feature struc-
tures, since, according to the definition of relational feature structures (or morphs)
in (Richter, 2000), only nodes of single feature structures can be in their relational
extension. If the user tries to put nodes of different feature structures into the same
tuple of the relational extension, feature structure checking will fail. Similarly, sig-
nature checking fails if the number of nodes in a tuple does not meet the arity of
the relation according to the signature.

For lack of space, we have not discussed the complete logical functionality of
MoMo. Besides the semantics of the description language in a domain of feature
structures, MoMo also comprises the logically more general semantics of RSRL
that goes back to Paul King’s semantics of SRL (King, 1999). This gives advanced
students the opportunity to go beyond the canonical semantics of feature structure
models and explore alternative ways of assigning meaning to HPSG grammars like
the exhaustive models of King or the strong generative capacity of Pollard (1999).

11.3 Courses on Grammar Formalisms and Parsing

MoMo is being developed as part of a set of courses on grammar formalisms and
parsing in the format of web-based training. In our opinion, online courses are
better suited for seminars with a highly diverse audience with varying background
and different prior knowledge than courses in a traditional seminar-style setting.
The course system comprising MoMo to some degree allows students to find their
own learning paths through the course materials.

The course modules currently under development are (1) a module on the for-
mal foundations of HPSG, (2) a module on grammar implementation, and (3) a
module on constraint-based parsing. The module on formal foundations will be
centered around MoMo, which is an implementation of large portions of RSRL
(Richter et al., 1999; Richter, 2000), a comprehensive logical formalism for model-
theoretic linguistic theories that was specifically designed to capture the informally
presented ideas of Pollard and Sag (1994). The module on grammar implemen-
tation will include a set of increasingly complex teaching grammars in TRALE.
These grammars will include the usage of a lexical rule compiler developed by
Detmar Meurers, and linearization grammars that will be implemented using a lin-
earization module of TRALE specifically designed by Gerald Penn of the Univer-
sity of Toronto for the purposes of these courses. Finally, we are currently porting
the LinGO6 English Resource Grammar (ERG) from LKB (on which the ERG was
designed) to the TRALE system. The LinGO port is meant to provide a big exem-
plary grammar for the exploration by students who have taken this course module,
and it is intended to show the viability of our logical approach to grammar design
for large scale grammars. The module on constraint-based parsing, finally, will
link discussions of algorithms to the actual annotated system source code in the

6http://lingo.stanford.edu/csli
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TRALE system used to implement them, and mathematical definitions and discus-
sions of linguistic constructions to the actual annotated grammar source code used
to represent them in a typical implementation. The TRALE system will include a
graphical user interface for interleaved visualization and interaction with trees and
attribute value matrices, and an Emacs-based source level debugger for grammar
development.

The course materials under development are being integrated with the web-
based training platform ILIAS, which is a freely available open source software.7

A more complete overview of the nature of our courses, the extensive system of
hyperlinks employed throughout, and the educational methods that underly their
implementation can be found in (Meurers et al., 2002). We expect to conclude
work on all modules by the end of 2003, when the project will have to be completed
and the courses will be made publicly available.
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