
Aspects of Automatic Ontology Extension:
Adapting and Regeneralizing Dynamic Updates

Ekaterina Ovchinnikova1 Kai-Uwe Kühnberger2

1 Seminar für Sprachwissenschaft
University of Tübingen

72074 Tübingen, Wilhelmstr. 19, Germany
Email: e.ovchinnikova@gmail.com

2Institute of Cognitive Science
University of Osnabrück

49076 Osnabrück, Albrechtstr. 12, Germany
Emai: kkuehnbe@uos.de

Abstract

Ontologies are widely used in text technology and ar-
tificial intelligence. The need to develop large on-
tologies for real-life applications provokes researchers
to automatize ontology extension procedures. Auto-
matic updates without the control of a human expert
can generate potential conflicts between original and
new knowledge. As a consequence the resulting on-
tology can yield inconsistencies. On the other hand,
even if the information extracted from the external
sources automatically is consistent with the original
ontology it can be generalized unsystematically and
conceptually wrong what will lead to mistakes by the
application of the extended ontology. We propose an
algorithm that models the process of the adaptation
of an ontology to new information and regeneralizes
the resulting ontology in a more intuitive way insert-
ing additional knowledge where it is possible.

1 Introduction

There is an increasing interest in applying and us-
ing ontological knowledge in artificial intelligence.
Examples for applications of ontologies in AI are
expert systems, dialogue systems, robotics, reason-
ing systems, web services, and text technological
tools. In general, knowledge-based systems are pro-
totypical examples for using and applying ontolog-
ical knowledge. The interested reader is referred
to www.cs.utexas.edu/users/mfkb/related.html,
where a long list of different knowledge-based systems
and ontology projects can be found.

An important motivation for research in ontology
design is the fact that inference processes can be made
more efficient. For example, an ontology with a sub-
sumption relation based on a many-sorted logic al-
lows to restrict inferences to those rules that are in
accordance to the sortal constraints. A classical (and
famous) application in the field of theorem proving
is the steamroller problem (Walter 1985) where the
number of clauses that are necessary to solve the
problem can be significantly reduced by introducing
hierarchical constraints on these sorts. Besides such
technical aspects, there is a further very general rea-
son for the endeavor to develop models for ontological

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 48. Vladimir Estivill-Castro and Gillian Dobbie, Ed. Re-
production for academic, not-for profit purposes permitted pro-
vided this text is included.

systems: ontologies are still one of the few possibilities
to explore the hard problem, whether machines can
assign meanings to symbols, i.e. whether machines
can develop an important aspect of human-level in-
telligence.

The most important new development motivat-
ing many researchers on focusing on ontologies is the
omnipresence of the world wide web together with
its numerous applications and its economic impor-
tance. It is often claimed that ontological (i.e. se-
mantic) knowledge about domains of interest is one
of the most important steps in order to develop
new and intelligent web applications (Berners-Lee,
Hendler &Lassila 2001). Examples for such services
are intelligent search tools for large archives of multi-
modal information, multi-modal resources for arti-
ficial agents and personal assistants (that are per-
manently connected with the internet), or intelligent
document management tools for libraries and com-
panies. But also e-commerce applications, the devel-
opment of portals, or geospatial applications could
benefit from ontological knowledge.

Since the manual development of large ontologies
has been proven to be a very tedious, time-consuming
and expensive task, automatic procedures for seman-
tic annotations of relevant resources (texts and web
content) and the possibility to automatically adapt
and extent such ontologies would be desirable. There-
fore one can find many current investigations that
are devoted towards a development of automatic on-
tology learning methods (Gómez-Pérez & Manzano-
Macho 2003).

During the last decades several formalisms have
been proposed to represent ontological knowledge. In
recent years the world wide web and its connection to
various economically important applications has been
provided the environment for dynamic developments
in representation language standards. Probably the
most important one of existing markup languages for
ontology design is the Web Ontology Language OWL
(OWL 2004) in its three different versions OWL Lite,
OWL DL, and OWL Full (W3C 2004). The men-
tioned OWL versions are hierarchically ordered, such
that OWL Full includes OWL DL, and OWL DL in-
cludes OWL Lite. Consequently they differ in their
expressive strengths with respect to possible concept
formations.

All versions of OWL are based on the logical for-
malism called Description Logic DL (Baader et al.
2003). Description logics were originally designed for
the representation of terminological knowledge and
reasoning processes. They can be characterized as
subsystems of first-order predicate logic using at most
two variables. Two points should be mentioned:

• In comparison to full first-order logic, description
logics are – due to their restrictions concerning
quantification – rather weak logics with respect
to their expressive strength. Nevertheless they
are considered as appropriate representation for-
malisms for ontological knowledge.

• DL can be used to characterize the different
OWL versions. For example, OWL DL can be
logically characterized as a syntactic variant of
the description logic SHOIN (D) (Motik, Sat-
tler &Studer 2004). As a consequence of the clear
logical foundation of the OWL versions using de-
scription logics, important formal properties of
the different OWL versions can be specified, for
example, their decidability properties: whereas
OWL Full is undecidable (due to the lack of re-
strictions to transitive properties), OWL DL and
OWL Lite are decidable.

Although most of the tools extracting or extending
ontologies automatically output the knowledge in the
OWL-format, they usually use only a small subset
of the underlying description logic. Core ontologies
generated in practice usually contain the subsump-
tion relation defined on concepts (inducing a tax-
onomy) and general relations (such as part-of). At
present complex ontologies making use of the whole
expressive power and advances of the various ver-
sions of description logics can be achieved only manu-
ally or semi-automatically. Disadvantages of manual
or semi-automatic applications of knowledge repre-
sentation formalisms are costs (expensive and time-
consuming).

However, several approaches appeared recently
tending not only to learn taxonomic and general re-
lations but also to state which concepts in the knowl-
edge base are equivalent or disjoint (Haase 2005).
In the present paper, we concentrate on these ap-
proaches. We will consider only terminological knowl-
edge (called TBox in DL) leaving the information
about assertions in the knowledge base (called ABox
in DL) for the further investigation.1

Approaches of automatic ontology learning and
automatic ontology extension – in particular if they
are based on rather expressive logics – are often faced
with the so-called generalization problem.2 The ap-
propriate level of granularity of an underlying ontol-
ogy is usually hard to achieve. Two major problems
can be distinguished:

• Inappropriate generalizations of concepts can
lead, in the worst case, to inconsistencies if on-
tologies are automatically extended. Assume a
concept C in the ontology was overgeneralized,
then a new axiom that must be added to the on-
tology – due to new available information – can
represent an exception towards C and can con-
flict with its definition. In this case C is too
coarse. Resolving inconsistencies in logic based
systems is well-known to be a hard problem.

• The undergeneralization of concepts in an ontol-
ogy does not provoke inconsistencies, but it can
lead to a loss of information by an ontology ap-
plication (Ceusters et al. 2003). In this case, the
underlying concept must be generalized because
in its original form it is too fine-grained.

In this paper, we provide an overview of the men-
tioned generalization problems in ontologies automat-
ically learned from external sources. Sections 3 and 4

1The formal definition of terminological knowledge coded in a
TBox is stated in Section 2.

2For a motivation compare (Haase et al. 2005).

discuss the overgeneralization problem, whereas Sec-
tion 5 deals with the undergeneralization problem.
We give algorithmic solutions for both problems, in
particular we specify how to resolve occurring con-
tradictions and get additional knowledge where this
is possible, and how regeneralizations of an ontology
can be achieved if some underlying concepts is too
fine-grained.

The paper has the following structure: In Section
2, we roughly summarize some important definitions
of the syntax and semantics of description logics and
we introduce the notion of least common subsumer.
Section 3 starts with a rough summary of classical
existing approaches to model inconsistent informa-
tion and presents some intuitive ideas how occur-
ring inconsistencies in ontology extension processes
can be resolved. In Section 4, we present the algo-
rithm AdaptOnto that allows the extension of ontolo-
gies with inconsistent information by an adaptation
process. Section 5 addresses the generalization prob-
lem in consistent ontologies and proposes an algorith-
mic solution of this problem by the the algorithm Re-
gen as well as the prototype implementation. Last
but not least, Section 6 adds some remarks concern-
ing semantic issues and Section 7 concludes the paper.

2 Description Logic

2.1 Basic Definitions

In this section, we define the DL-logic underlying
the ontological knowledge representation considered
in this paper.3 For a detailed presentation and
an overview of various description logics, including
their syntax and semantics, the reader is referred to
(Baader et al. 2003).

Given a set of concept names NC and a set of role
names NR a TBox (terminological box) is a finite set
of axioms of the form A1 ≡ A2 (equalities) or A v C
(inclusions) where A stands for a concept name and
C (called concept description) is defined as follows (R
denotes a role name):

C → A | ¬A | ∀R.A

The symbol =̇ denotes the syntactical equality of
of concept descriptions. The concepts occurring on
the left side of an axiom are called axiomatized (ax).
In an axiom with a concept A on the left side the
concept on its right side is called definition of A.

Concept descriptions are interpreted in a classical
model-theoretic sense (for details compare (Baader
et al. 2003)). An interpretation I is a pair (∆I , ·I)
where ∆I is a non-empty domain of individuals and
the interpretation function ·I maps concept names to
subsets of ∆I and role names to subsets of ∆I ×∆I .
Concept descriptions are interpreted as follows:

(¬A)I = ∆I \AI

(∀R.A)I = {x ∈ AI | ∀y.〈x, y〉 ∈ RI → y ∈ AI}
An interpretation I is a model of a TBox T if for

every inclusion A v C in T it holds AI ⊆ CI and for
every equality A1 ≡ A2 we have AI

1 = AI
2. A concept

description D subsumes C in T (formally represented
by T |= C v D) if for every model I of T : CI ⊆ DI .
A concept C is called satisfiable towards T if there is
a model I of T such that CI is nonempty. Otherwise
C is called unsatisfiable and it holds T |= C v ⊥.

3In the following definitions we closely follow (Haase et al. 2005)
who present an approach using one of the most powerful DL-version
in ontology learning procedure.

Algorithms for checking satisfiability of concept
descriptions have been implemented in several reason-
ing systems.4 For example, the FaCT system imple-
ments subsumption for a very expressive DL SHIQ
(Horrocks 1998). Most of these systems are based
on Tableau calculi. The idea is to use facts about
the world (coded in the ABox) in order to construct
a model for these facts (relative to the given TBox).
The construction is usually performed by so-called ex-
pansion rules decomposing underlying concepts until
no further application of a rule is possible or a contra-
diction is reached. It should be noted that the these
reasoners usually use the well-known correspondence
between the subsumption C v D and the unsatisfia-
bility of C u ¬D.

2.2 Least Common Subsumers

Recent research in description logics is strongly con-
cerned with non-standard inferences (see (Baader&
Küsters 2006) for an overview) tending to support
bottom-up constructing of a knowledge base. A
knowledge engineer introduces typical examples of a
new concept and the system tries to find commonali-
ties between them and generalize it into a definition.

An important task for generalizing a new concept
is the computation of the least common subsumer for
a set of concepts (first mentioned in (Cohen et al.
1993)). Intuitively, the least common subsumer (lcs)
for two concept descriptions C1 and C2 is a concept
description that collects all common features of C1
and C2 and is most specific towards subsumption.

Definition 1 A concept description E of DL L is a
least common subsumer (lcs) of the concept descrip-
tions C1, ..., Cn in L (lcsL(C1, ..., Cn) for short) iff it
satisfies

1. ∀i ∈ {1, ..., n} : Ci v E and

2. ∀E′ ∈ L: if ∀i ∈ {1, ..., n} : Ci v E′ then
E v E′.

There are algorithms for computing lcs for differ-
ent DL logics (see (Baader & Küsters 2006)). All
of them work with logics allowing at least the top
element. Because of the specificity of the logic con-
sidered in this paper (no conjunction, no top and bot
elements, multiple definitions for one concept) we de-
fine the set of the least common subsumers lcss for
the set of concept descriptions C1, ..., Cn towards a
TBox T slightly different from the usual way.

First of all, let us recursively define the function
ss computing the set of all possible subsumers
(formulated in the DL under contrectation) for a
concept C towards a TBox T :

ss(C, T) = {D | D=̇C ∨ C v D ∈ T ∨
∃A ∈ ss(C, T) : A v D ∈ T }∪

{¬A | ∃A′ : ¬A′ ∈ ss(C, T) ∧A′ ∈ ss(A, T)}∪
{∀R.A | ∃A′ : ∀R.A′ ∈ ss(C, T) ∧A ∈ ss(A′, T)}
It is obvious that every concept description from

the set ss(C, T) subsumes C towards T (∀C ′ ∈
ss(C, T) : T |= C v C ′). It is also easy to show
that no concept description subsuming C towards T
and not belonging to ss(C, T) can be constructed in
the DL under consideration.

Now we define the function lcss computing the set
of the least common subsumers for a set of concept
descriptions C1, ..., Cn towards a TBox T according
to Definition 1:

4Some of the DL reasoners are listed at
http://www.cs.man.ac.uk/∼sattler/reasoners.html.

If CS = {C ∈∩i∈{1,...,n}ss(Ci, T)}
then ∀C ∈ CS :

∀C ′ ∈ CS : (T |= C ′ v C → C ′=̇C) →
C ∈ lcss(C1, ..., Cn, T)

In the following sections we show how the notion
of the least common subsumer can be used for regen-
eralizing a TBox.

3 Ontology Extension: Inconsistencies

3.1 Classical Approaches for Inconsistent In-
formation

Inconsistencies occurring in reasoning processes do
have a long history in artificial intelligence. Due to
the fact that many approaches in AI are based on one
or the other form of classical logic and inconsistencies,
for example, triggered by new information added to a
knowledge base, cannot be easily treated in classical
logic, researchers proposed many approaches to solve
this problem. The difficulties in modeling inconsis-
tencies in classical logic are strongly connected to the
monotonicity property of logic. For all sets of first-
order formulas ∆ and all first-order formulas φ and ψ
it holds:

if ∆ ` φ then ∆ ∪ ψ ` φ

But clearly: if ψ ↔ ¬φ, we do not want to prove
φ. Most prominently non-monotonic reasoning tech-
niques were extensively discussed to avoid this conclu-
sion. We mention three of the proposed approaches
towards modeling non-monotonicity.

• Default logic (Reiter 1980): A default theory
〈W,∆〉 distinguishes two types of rules. W repre-
sents a world description, i.e. strict background
knowledge, whereas ∆ denotes a set of defaults,
representing revisable information. Intuitively
(and very simplified) this means: if we have no
evidence that a formula ¬θ is true, then assume
that θ holds.

• Answer set programming (Baral 2003): A nat-
ural idea of modeling inconsistencies is to in-
troduce a ranking of rules that can be applied
in reasoning systems. Intuitively more specific
rules are higher ranked than very general rules,
i.e. general rules can be overwritten (revised) by
specific information.

• Circumscription (Lifschitz 1994): Based on the
idea of logical minimization, the circumscription
of a predicate P relative to a world description
W means that there is no other predicate P ′
such that W still holds and the extension of P ′ is
strictly smaller than the extension of P . In other
words, P is minimal with respect to W .

The listed approaches represent only a few exam-
ples of theories that were proposed to model inconsis-
tencies and non-monotonicity. Nevertheless no gen-
erally accepted solution for these problems seems to
be available.

3.2 Inconsistencies and Ontologies

We want to consider inconsistencies in ontologies
more closely. An ontology based on description logic
can contain contradictions only if its underlying logic
allows negation. Ontologies share this property with
every logical system (like, for example, first-order
logic). For the approaches concerned with core on-
tologies no contradictions in ontological knowledge is
possible. But for the approaches using more powerful

logics the problem of inconsistency becomes very im-
portant as was shown in (Haase et al. 2005). In order
to make the notion of inconsistency of a TBox precise
we give the following definition.

Definition 2 A TBox T is inconsistent if there exist
a concept C ∈ ax(T) that is unsatisfiable.

A number of approaches have been proposed
treating inconsistencies by extending the under-
lying description logic with additional syntactical
means. Some examples are extensions by default
sets (Heymans & Vermeir 2002), by planning sys-
tems (Baader et al. 2005), by belief-revision processes
(Flouris et al. 2005), or by epistemic operators (Katz
&Parsi 2005). Unfortunately, these approaches are
beyond ordinary description logics, i.e. they cannot
be coded in DL. Therefore the standard application
of classical DL reasoners is impossible due to the fact
that standard DL inferences cannot be performed.

There are several theoretical approaches treat-
ing occurring inconsistencies for quite expressive DL-
logics, but – contrary to the cases above – do not go
beyond description logic. The following list summa-
rizes some of these approaches:

• (Ghilardi et al. 2006) suggests a characteriza-
tion of non-conservative extensions of an ontol-
ogy: If a concept description is satisfiable prior
to an extension, but becomes unsatisfiable after
the extension, then a witness concept description
demonstrating this fact will be suggested to the
ontology engineer. Occurring inconsistencies af-
ter ontology extensions can be considered as a
special case of non-conservative extensions. This
approach does not give a solution for the incon-
sistency problem but only helps the human ex-
pert to discover it in some cases.

• In (Fanizzi et al. 2005) the authors propose an
ontology refinement procedure based on positive
and negative assertions for concepts. If a con-
cept C becomes unsatisfiable after an ontology
extension, then the axiom defining C is replaced
by a new axiom constructed on the basis of the
positive assertions for this concept. Thus, the in-
formation previously defined in the TBox for the
concept C gets lost.

• (Ovchinnikova & Kühnberger 2006a) introduce
a procedure automatically changing the original
ontology if it conflicts with new information. The
changes in the conflicting axioms are performed
in order to achieve a resulting ontology that is
consistent. Additionally these changes can be in-
terpreted as an adaptation process, amalgamat-
ing previous knowledge to new data. This ap-
proach presupposes that new axioms introduced
added to the TBox by the ontology extension are
always consistent towards the ontology.

The listed approaches (and many others dealing
with non-monotonic and non-conservative extensions)
are concerned with relative expressive DL-logics and
tend to support a semi-automatic development of
ontologies. The situation with automatic ontology
learning seems to be different. First, there is no on-
tology engineer who supervises the procedure. Sec-
ond, the changes in the ontology are supposed to be
relevant and possibly minimal. Third, the axioms ex-
tracted from the external sources automatically can
be inconsistent. Finally, the underlying logic tend to
has a quite week expressive power. In the next sub-
section, we consider some types of examples for which
an automatic adaptation should be possible.

3.3 Inconsistencies by the Automatic Ontol-
ogy Learning

An interesting approach towards an automatic ontol-
ogy learning procedure is proposed in (Haase et al.
2005). If the ontology under consideration proves to
be inconsistent, then one or more axioms must be
deleted from this ontology. The axioms to be deleted
are chosen according to the confidence rating. This
rating is computed on the basis of the terms distribu-
tion in texts used for learning.

But in some cases the removal of the whole axiom
can lead to loss of the relevant information. We
consider an example5 to make this point clear.

TBox: {Bird v Flies, Flies v Moves,
Canary v Bird, Pinguin v Bird}

New axiom: Pinguin v ¬Flies
By removing the information birds fly we will

obtain the proper generalization but lose the knowl-
edge that all birds considered before the ontology
extension (such as Canary - the subtype of Bird)
can fly. We propose the following solution of how to
adapt the ontology to the new information.

Adapted TBox:
{Bird v Moves, Flies v Moves,
FliyngBird v Bird u Flies,
Canary v FlyingBird, Pinguin v Bird u ¬Flies}
The proposed solution is simple: We want to

keep in the definition of the concept Bird subsum-
ing Pinguin possibly more information that does not
conflict with the definition of Pinguin. The conflict-
ing information is moved to the definition of the new
concept FlyingBird which is declared to subsume all
former subconcepts of Bird (as for example Canary).

Presupposing that the axioms extracted from the
external sources in order to be added to the ontology
contain true information we conclude that the incon-
sistency is provoked by the overgeneralized concepts.
The statement all birds fly in the example above
proved to be too general after a counterexample
appeared. The example below demonstrated a case
when two overgeneralized definitions of the same
concept conflict with each other:

TBox: {Tomato v ∀Color.Red,
Red v Color u ¬Yellow,
Yellow v Color u ¬Red}

New axiom: Tomato v ∀Color.Yellow
Adapted TBox:
{Tomato v ∀Color.Color, Red v Color u ¬Yellow,
Yellow v Color u ¬Red}

In the example above the both definitions of
Tomato (∀Color.Red and ∀Color.Yellow) are too spe-
cific. Red and Yellow being disjoint concepts produce
a conflict. It seems to be an intuitive solution to re-
place these concepts by their least common subsumer
Color and claim that all tomatoes have color without
specifying it.

Unfortunately, not all the types of inconsistency
can be resolved automatically. For auch axioms as
A v D and A v ¬D no other alternative can be found
to guarantee consistency except to removing one of
the problematic axioms or both of them. Without
appealing to external knowledge (such as the confi-
dence rating of the axioms) one cannot decide which
axiom must be deleted from the TBox.

We want to generalize the demonstrated examples.
If a concept X is defined in the TBox T by the axioms

5In the following examples we use the symbol u for abbreviation:
{C v D1 uD2} stands for {C v D1, C v D2}.

X v A and X v B such that A u B is unsatisfiable
towards T , then the following options can be distin-
guished:

1. A=̇¬B or B=̇∀R.B′, A=̇∀R.¬B′
In this case there is no automatic logical solution.

2. A and B are disjoint concept descriptions having
common subsumers
The solution in this case is to compute the set
of the least common subsumers lcss for A and B
and replace the definitions X v A,X v B with
the definitions from the lcss(A,B, T) set.

3. A ∈ ax(T) and some definition D of A conflicts
with B
This case can be considered as the overgeneral-
ization of A because the concept X being sub-
concept of A represents an exception towards the
definition D. The definition D must be revised
as follows: a) D will be replaced with its most
specific superconcepts that do not conflict with
B; if there is no such concept then A v D will
be just deleted; b) new concept A′ will be added
to the TBox as a subconcept of A and D; A will
be replaced with A′ in the definition of all its
subconcepts except X.

4. A,B ∈ ax(T), a definition DA of A conflicts with
B and a definition DB of B conflicts with A
In this case there is no automatic logical solu-
tion. Any of the definitions (DA or DB) can
be changed in the way described in the previ-
ous option (3) in order to achieve a consistent
ontology. Confidence rating suggested in (Haase
et al. 2005) can be used for selection of the ax-
ioms to be changed. In this paper we do not
discuss this rating. Let rconf : Concepts → R
be a function assigning the confidence rating to
every concept.

The ontology adaptation algorithm described in
the next section is a modification of the ideas
that have been developed for the ALEN -DL in
(Ovchinnikova & Kühnberger 2006a) in order to
model the less expressive logic defined in (Haase
et al. 2005). This relatively weak logic seems to be
appropriate for an implementation of an automatic
ontology extension procedure.

4 Ontology Adaptation Algorithm

In this section we describe the algorithm adapting
an ontology to a new axiom. Before applying the
adaptation algorithm to a TBox all equalities must
be replaced by inclusions: A1 ≡ A2 → A1 v A2,
A2 v A1.

The proposed algorithm AdaptOnto introduces a
procedure that adapts a TBox T to a new axiom
X v Y . The algorithm revises all the definitions of
the concepts subsumed by X towards T because the
introduction of a new definition of a concept X can
have an influence on the semantics of its subconcepts.
If a concept A is a subconcept of X then every two
definitions D1, D2 of C are checked on conflicts. If
D1 conflicts with D2 and there the set of common
subsumers for D1 and D2 is not empty then D1 and
D2 in the definitions of A will be replaced with their
least common subsumers.

A definition of A (D1 or D2) is overgeneralized
(and denoted by Do) if it is axiomatized in T and
some of its definitions conflicts with the other defini-
tion of A6. The definition of Do will be changed. The

6In the case of two overgeneralized concepts the axioms to be
changed are chosen according to the confidence rating.

other concept from the set {D1, D2} denoted by Dc
is called contradicting.

The set Cc collects superconcepts of Do that con-
flict with Dc; Cn stands for non-contradicting con-
cepts. As explained in Section 3, the conflicting def-
initions of Do (from the set Cc) are removed from
T and assigned to the new concept NA if they are
minimal towards subsumption. NA is declared to be
a subconcept of Do. Non-on-contradicting concepts
from Cn that are minimal towards subsumption are
added to the TBox as definitions of Do. Previous sub-
concepts of Do are declared to be subsumed by the
new concept NA that captures the original semantics
of Do.

Obviously, the relevance of the proposed adapta-
tion procedure can be proved only by testing the al-
gorithm on existing ontologies.

5 Generalization Problem in Consistent On-
tologies

5.1 The Problem

Even a consistent ontology can contain generalization
errors. The automatic ontology learning procedures
often rely on random facts that are extracted from
external sources and not observed by a human ex-
pert. Therefore the proper generalization of an auto-
matically extracted ontology is rather accidental than
intended.

If some axioms in the ontology are overgeneralized
then only the appearance of the exceptions can help
to revise their definitions (as shown in Section 3).
But the undergeneralized concepts can sometimes
be revised without additional information. Let
us consider a simple example. Suppose that our
ontology contains the facts:

- Dogs are animals that can breathe and drink
water.

- Cats are animals that can breathe and
sometimes drink milk.

- Horses are animals that can breathe and
sometimes eat hay.
... and so on for other animals.

Probably we would like to conclude from such a
collection of facts that all animals can breathe and
reformulate the ontology in the following way:

- All animals can breathe.
- Dogs are animals that drink water.
- Cats are animals that sometimes drink milk.
- Horses are animals that sometimes eat hay.

... and so on.

Undergeneralization does not lead to inconsisten-
cies of an ontology. But it is also not only a matter
of design. Suppose that by further extension of an
ontology or by instantiation it will be derived that a
mole is an animal but nothing else is known about it.
We would like to infer that a mole can also breathe
like other animals do. A proper generalization will
help us to do so.

In practical applications the undergeneralization
problem is well-known and usually treated either
semi-automatically or per analyzing external linguis-
tic data. For example, in (Ceusters et al. 2003) it is
shown how cross-lingual information can be used to
detect undergeneralization in large ontologies.

Input: a TBox T , an axiom X v Y
Output: an adapted TBox T ′
T ′ := T ∪ {X v Y }
FOR A ∈ {A′ ∈ ax(T ′) | T ′ |= A′ v X}

FOR {D1, D2} : A v D1 ∈ T ′ ∧A v D2 ∈ T ′ ∧D1 6= D2

IF T ′ |= D1 uD2 v ⊥ THEN
LCS := lcss(D1, D2, T ′)
IF LCS 6= ∅ THEN

T ′ := T ′ \ {A v D1, A v D2} ∪ {C v C ′ | C ′ ∈ LCS}
ELSE

IF ∃i, j ∈ {1, 2} : ∃D′
i : Di v D′

i ∈ T ′ ∧ T ′ |= D′
i uDj v ⊥ THEN

IF ∃D′
j : Dj 6=i v D′

j ∈ T ′ ∧ T ′ |= D′
j uDi v ⊥ THEN

Do := Dk∈{1,2} such that rconf (Dk) < rconf (Dm∈{1,2},m6=k)
Dc ∈ {D1, D2} \ {Do}

ELSE Do := Di, Dc := Dj
END IF
Cc := {C | C ∈ ss(Do, T ′) ∧ T ′ |= C uDc v ⊥}
Cn := {C | C ∈ ss(Do, T ′) ∧ T ′ 6|= C uDc v ⊥}
T ′ := T ′ \ ({Do v C | C ∈ Cc} ∪ {Z v Do | Z 6= A})∪

{Do v C | C ∈ Cn ∧ ∀C ′ ∈ Cn : T ′ |= C ′ v C → C ′=̇C}∪
{NA v C | C ∈ Cc ∧ ∀C ′ ∈ Cc : T ′ |= C ′ v C → C ′=̇C}∪
{NA v Do} ∪ {W v NA | W 6= A ∧W v Do ∈ T ′}

ELSE RETURN FALSE
END IF

END IF
END IF

END FOR
END FOR

Figure 1: The Algorithm Adapt for adapting a TBox T to a new axiom given by a concept description. The
output is a new TBox T ′ resolving overgeneralized definitions.

In (Ovchinnikova & Kühnberger 2006b) the au-
thors introduce the induction procedure designed for
the regeneralization of the axioms in an ALCN de-
scription logic. In the following sections we adapt this
procedure to the simple DL logic under consideration
in order to make it applicable in automatic ontology
learning.

5.2 Induction

The idea of the induction procedure proposed in
(Ovchinnikova & Kühnberger 2006b) is simple. If all
subconcepts of a concept C are also subconcepts of
some other concept G then C is likely to be a sub-
concept of G. Such generalizations are very similar
to what is called upward inheritance in feature logics
or programming: if all subtypes of a type C share the
same feature, this feature should be inherited by C.

For practical applications it is useful to introduce
certain heuristics and generalize a concept only if it
has more than t many subconcepts with the same
feature, where t is an empirical parameter. In other
words statistical information can be used in order to
decide whether a concept should be generalized or
not.

After the execution of inductions it can happen
that mistakes occur provided that more information
is available. For example, if only bird species occur
in a certain context and we apply induction it could
happen that we end up with an ontology where all
animals can fly. All inductions can be checked and
adapted during the next steps of the ontology ex-
tension by applying the procedure described in the
previous sections.

The following definition specifies the induction
procedure. In Subsection 5.3 and Subsection 5.4, we
will consider the algorithmic details of induction by
discussing the algorithm Regen, and we will add some
remarks concerning the prototype implementation.

Definition 3 Induction Ind
For every TBox T , for every concept name A the in-
duction function Ind : TBox×A → TBox is defined
as follows:
Leaves(A) := {A′ | T |= A′ v A ∧
∀ concept name B : T |= B v A → T |= A′ v B}

LCS = lcss(A1, ..., An, T) where n = |Leaves(A)| ∧
∀i, j ∈ {1, ..., n} : Ai,j ∈ Leaves(A) ∧
i 6= j → Ai 6= Aj

Ind(T , A) = T ∪ {A v C | C ∈ LCS ∧
∀C ′ ∈ LCS : T |= C ′ v C → C ′=̇C}

In Definition 3, the induction function Ind is de-
fined for a TBox T and a concept name A. The set
Leaves collects all the subsumers of A that have no
further subsumers. The set LCS represents the least
common subsumers for the leaves of A. The induction
function returns the TBox T ′ extending T with ax-
ioms that are minimal towards subsumption concepts
from LCS.

In order to make the induction procedure more
transparent, we give a simple example of the appli-
cation of the induction function:

TBox:
{Mother v Parent u Woman u ∀HasChild.Person,
Father v Parent u Man u ∀HasChild.Person,
Grandparent v Parent u ∀HasChild.Parent,
Man v Person, Woman v Person}

Regeneralized TBox:
{Parent v Person u ∀HasChild.Person,
Mother v Parent u Woman,
Father v Parent u Man,
Grandparent v Parent u ∀HasChild.Parent,
Man v Person, Woman v Person}

In the example above, new information is added

Input: a TBox T
Output: a regeneralized TBox T ′
T ′ := T
FOR concept name A

Leaves(A) := {A′ | T |= A′ v A ∧
∀ concept name B : T 6|= B v A′}

IF |Leaves(A)| ≥ t THEN
LCS := ∅
FOR C ∈ Leaves(A)

LCS := LCS ∩ lcss(C, T)
END FOR
FOR C ∈ LCS

IF T ′ 6|= A v C THEN
T ′ := T ′ ∪ {A v C}

FOR A′ : T ′ |= A′ v A
T ′ := T ′ \ {A′ v D | T ′ |= C v D}

END FOR
END FOR

END IF
END FOR

Figure 2: Algorithm Regen for the regeneralization of
a TBox T . Regen resolves undergeneralized concept
definitions.

to the definition of the concept Parent. For the def-
initions of its leaves Mother and Father being also
subconcepts of Grandparent it is induced that every
parent is a person and its child is also a person.

In the next section, we introduce the algorithm re-
generalizing a TBox formalized in the DL logic under
consideration.

5.3 Ontology Regeneralization

This section presents the regeneralization algorithm
Regen inducing new definitions for concepts in the
TBox T on basis of the definitions of their subcon-
cepts.

The algorithm proposed in Figure 2 tries to re-
generalize every concept A in T . The set of leaves
Leaves(A) is computed for A. If the cardinality of
this set exceeds the empirical parameter t (for t ∈ N),
then the set of the least common subsumers LCS is
computed relative to the concepts in Leaves(A). If
the set LCS is non-empty, then the concept A will be
regeneralized as follows:

a) Concept descriptions from the set LCS will
be declared to subsume A

b) The definitions of the subconcepts of C that
subsume concepts from LCS will be removed
(since they become redundant).

The algorithm Regen computes algorithmically the
construction specified in Definition 3 by computing
the generalization of a given TBox.

5.4 Prototype Implementation

The prototype implementation of the regeneraliza-
tion procedure has been tested successfully on an
example ontology automatically extracted with the
tools developed in the framework of the ASADO
project (www.cogsci.uni-osnabrueck.de/∼ASADO).
The basis of the ASADO project were scanned doc-
uments (a majority of them taken from the avia-
tion industry). In the project, tools were applied to
make the documents electronically available. Exam-
ples of such tools were an OCR-software, a tagger,
or a state-of-the-art statistical parser. Based on the
resulting electronically enriched documents an ontol-
ogy for these documents was automatically extracted.

For cross-evaluation purposes other document cor-
pora were also used.

The ASADO ontology contains only the taxonomy,
general relations and conjunction. Here is an example
of a concept definition in the RDF format:

<rdfs:Class rdf:about="o:telephone-account">
<rdfs:subClassOf rdf:resource="o:account"/>

</rdfs:Class>

According to this definition the concept telephone
account is a subconcept of the concept account having
the property to be ”telephone”. In description logics
this information can be formalized as follows:

telephone-account v telephone u account

The considered ASADO ontology contains approx-
imately 3000 concepts. Among them we have found
20 undergeneralized concepts. It is a matter of dis-
cussion if all regeneralizations proposed by the sys-
tem are relevant for the thematic area under consid-
eration. But the discovered undergeneralization cases
can give the ontology engineer important hints of how
to refine an ontology extracted automatically. Fur-
thermore the undergeneralization cases can serve as
an additional evaluation criteria of the ontology learn-
ing procedure.

Let us consider a quite simple and obvious exam-
ple of an undergeneralized concept. The ASADO
ontology contains several concepts using the con-
cept hong in the definitions: epson-hong-kong, epson-
hong-kong-limited, epson-hong-kong-ltd, hong-kong-
phone, hong-kong-user. It is obvious that hong never
occurs in the ontology without the concept kong. The
system suggests to unite the concepts hong and kong
in one concept.

In the near future we plan to test the proposed
algorithm on ontologies formalized in more expres-
sive description logics. But the described prototype
implementation makes it possible to suggest that the
presented induction procedure is relevant for ontology
engineering.

6 Semantic Issues

Although we do not focus on semantic issues in this
paper, some remarks concerning the semantics of a re-
generalized TBox are added in this subsection, post-
poning a thorough discussion of this issue to another
paper.

Let us consider the regeneralization of just one
concept C axiomatized in a given TBox. By slightly
simplifying the situation, we have the following pic-
ture: If C is undergeneralized, then its definition will
be extended by the Regen algorithm. In case of over-
generalization some concept descriptions will be re-
moved from the definitions of C. It is easy to show
that in both cases only the semantics of C changes,
whereas the semantics of its subconcepts remains un-
changed. Obviously, the two processes change the se-
mantics of C in two different directions. Whereas the
induction procedure narrows the semantics of C, the
adaptation procedure extends it, induced by adding
or removing constraints on C.

Assuming that the ss(C ′) function introduced
above computes all possible concept descriptions sub-
suming C ′ in the DL under consideration, we can
claim that the induction procedure computes ”the
best” regeneralization for C relative to a given heuris-
tics, i.e. nothing more can be induced about C ac-
cording to the chosen heuristic.7

7Recall that the heuristics is based on the chosen natural num-
ber t of leaves of C with the same feature.

New information

given by an axiom

Update

Extended
Ontology

Ontology

Consistency

CheckAlgorithm

Regen

Regen-

eralization

Algorithm AdaptOnto
Consistent
Ontology

Inconsistent
Ontology

Adaptation Process

Figure 3: The diagrammatic representation of inte-
grating the algorithms described in this paper into an
ontology system. The resulting circle is permanently
updating ontological knowledge with new information
in a consistent way and keeps the ontology as compact
as possible.

In the adaptation procedure the choice of the over-
generalized concept is based on an heuristics. There-
fore it is impossible to prove strictly logically that
the Adapt algorithm guarantees the minimality of
changes8 of an inconsistent ontology. But once the
overgeneralized concept has been chosen, then it is
quite obvious that the Adapt algorithm removes as
minimal information as possible from its definition.
This fact follows directly from the definition of the ss
function. For an overgeneralized concept C the sets
Cc and Cn of conflicting and non-contradicting con-
cept descriptions subsuming C are computed on the
basis of the ss function. Therefore these sets are ex-
haustive in the description logic under consideration.

7 Conclusion and Future Work

In this paper, we presented an approach for dynami-
cally resolving conflicts appearing by automatic ontol-
ogy learning. We have adopted ideas firstly presented
in (Ovchinnikova & Kühnberger 2006a) for the subset
of description logics corresponding to the logic prac-
tically used in systems for ontology learning (Haase
et al. 2005). The main contributions of this paper are
the specification of an algorithm for ontology adapta-
tion for the mentioned weak logic practically used in
systems and the specification of an algorithm gener-
alizing ontologies (based on the same logic). Whereas
ontology adaptation is strongly connected to non-
monotonicity and the problem of handling inconsis-
tencies, generalizations are strongly related to induc-
tive reasoning.

The two algorithms AdaptOnto and Regen pre-
sented in this paper can be embedded into an overall
architecture amalgamating ontologies automatically.
Figure 3 represents diagrammatically how these two
algorithms can be embedded into an ontology frame-
work. The following list summarizes the major points
of this integration.

8Due to a long history of non-monotonic reasoning in AI where
minimality conditions play an important role, the formal definition
of the notion of minimality in this context requires an additional
investigation. In this section, we use this term informally just to
give an idea of how to evaluate the proposed procedures from the
semantical point of view.

• Starting with a given ontology O new informa-
tion (represented by axioms) updates the logi-
cal description of O. The result is a new (up-
dated) ontology O+, in other words the underly-
ing TBox is updated by these new axioms.

• In a second step, a standard reasoning system
checks the consistency of O+.

• If an inconsistency occurs, the presented algo-
rithm AdaptOnto generates a new consistent on-
tology O+

con. If no inconsistency occurs no adap-
tation is necessary.

• Finally the algorithm Regen rewrites the ontol-
ogy O+

con into an ontology representing knowl-
edge in a more compact way by rewriting under-
generalized concepts.

• The circle starts again by an update given of new
aioms.

In the near future we plan to develop a prototype
implementation of the proposed architecture by com-
bining the presented algorithms and test them on ex-
isting ontologies. It is of particular interest to see
to what extent statistical information about the dis-
tribution and co-occurrence of concepts in texts can
help to improve the adaptation procedure for mak-
ing it more adequate to human intuition. Similarly,
generalizations defined on ontologies are also depen-
dent on statistically relevant information as can be
seen in Figure 2 where generalization is only possible
if a concept has more than t subsumers with the same
feature.

An important theoretical issue we plan to examine
in the future are characterization results concerning
the complexities of the algorithms Adapt and Regen.

References

Baader, F., Lutz, C., Miličić, M., Sattler, U. &Wolter,
F. (2005), Integrating Description Logics and
Action Formalisms: First Results. In Proc. of
the 20th National Conference on Artificial Intel-
ligence (AAAI’05), AAAI Press (2005).

Baader, F., Calvanese, D., McGuinness, D., Nardi,
D. & Patel-Schneider, P. (eds.) (2003), Descrip-
tion Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press.

Baader, F. & Küsters, R. (2006), Non-Standard In-
ferences in Description Logics: The Story So
Far. International Mathematical Series, volume
4, Mathematical Problems from Applied Logic.
New Logics for the XXIst Century.

Baader, F. & Sattler, U. (2001), An overview of
tableau algorithms for description logics, Studia
Logica, 69:5–40.

Baral, C. (2006), Knowledge Representation, Reason-
ing and Declarative Problem Solving with An-
swer Sets. Cambridge University Press.

Berners-Lee, T., Hendler, J. & Lassila, O. (2001),
The Semantic Web – A new form of Web
content that is meaningful to computers will
unleash a revolution of new possibilities. Sci-
entific American, May 17, 2001, available on
the world wide web (10th of March, 2006):
http://www.sciam.com/print version.cfm?articl
eID=0004814410D21C7084A9809EC588EF21.

Ceusters, W., Desimpel, I., Smith, B. & Schulz,
S. (2003), Using Cross-Lingual Information to
Cope with Underspecification in Formal Ontolo-
gies, In Studies in Health Technology and Infor-
matics, 391–396.

Cohen, W., Borgida, A. & Hirsh, H. (1993), Com-
puting Least Common Subsumers in Description
Logics, In Proc. of the 10th Nat.Conf. on Arti-
ficial Intelegence (AAAI-92). AAAI Press, 754–
761.

Fanizzi, N., Ferilli, S., Iannone, L., Palmisano, I.
& Semeraro, G. (2005), Downward Refinement
in the ALN Description Logic. In: Masumi
Ishikawa, Shuji Hashimoto, Marcin Paprzycki,
Emilia Barakova, Kaori Yoshida, Mario Köppen,
David W. Corne and Ajith Abraham (Eds.), Hy-
brid Intelligent Systems (HIS’04), 68–73

Flouris, G., Plexousakis, D. &Antoniou, G. (2005),
Updating Description Logics using the AGM
Theory. In Proc. of the 7th International Sympo-
sium on Logical Formalizations of Commonsense
Reasoning.

Ghilardi, S., Lutz, C. & Wolter, F. (2006), Did I dam-
age my ontology: A Case for Conservative Ex-
tensions of Description Logics. In Proc. of Prin-
ciples of Knowledge Representation and Reason-
ing 2006 (KR06) (to appear).

Gómez-Pérez, A. & Manzano-Macho, D. (2003),
A survey of ontology learning methods
and techniques, http://ontoweb.aifb.uni-
karlsruhe.de/Members/ruben/Deliverable

Haase, P., van Harmelen, F., Huang, Z., Stucken-
schmidt, H. & Sure, Y. (2005), A Framework
for Handling Inconsistency in Changing Ontolo-
gies In Proc. of the Fourth International Seman-
tic Web Conference (ISWC2005), v. 3729, pp.
353-367. Springer (2005).

Heymans, S. & Vermeir, D.(2002), A Defeasible On-
tology Language, In Robert Meersman and Zahir
Tari et al., editors, Confederated International
Conferences: CoopIS, DOA and ODBASE 2002.

Horrocks, I. (1998), Using an expressive description
logic: FaCT or fiction? In Anthony G. Cohn,
Lenhart Schubert, and Stuart C. Shapiro, edi-
tors, KR’98: Principles of Knowledge Represen-
tation and Reasoning, 636–645. Morgan Kauf-
mann, San Francisco, California.

Katz, Y. &Parsia, B. (2005), OWL: Experiences and
Directions, Galway Ireland, online available at:
http://www.mindswap.org/2005/OWLWorkshop
/sub7.pdf.

Lifschitz, V. (1994), Circumscription. In: Handbook
of Logic in Artificial Intelligence and Logic Pro-
gramming, Volume 3, 297-352, Oxford University
Press.

Motik, B., Sattler, U. & Studer, R. (2004), Query
Answering for OWL-DL with Rules. In Proc.
of ISWC 2004, LNCS 3298, 549–563, Springer
(2004).

Ovchinnikova, E. & Kühnberger, K. (2006a), Adap-
tive ALE-TBox for Extending Terminologi-
cal Knowledge, In: Proc. of the 19th Aus-
tralian Joint Conference on Artificial Intelli-
gence, Springer (2006).

Ovchinnikova, E. & Kühnberger, K. (2006b), The Un-
dergeneralization Problem in Ontology Design.
In preparation.

Reiter, R. (1980), A logic for default reasoning. Arti-
ficial Intelligence 13:81-132.

OWL Web Ontology Language (2004), Overview.
W3C Recommendation 10 February 2004.
http://www.w3.org/TR/owl-features/.

Walter, C. (1985), A Mechanical Solution of Schu-
bert’s Steamroller by Many-Sorted Resolution.
Artificial Intelligence 26:217-224.

