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ABSTRACT
This paper presents the first systematic study of the coreference resolution problem in a general
inference-based discourse processing framework. Employing the mode of inference called
weighted abduction, we propose a novel solution to the overmerging problem inherent to
inference-based frameworks. The overmerging problem consists in erroneously assuming
distinct entities to be identical. In discourse processing, overmerging causes establishing
wrong coreference links. In order to approach this problem, we extend Hobbs et al. (1993)’s
weighted abduction by introducing weighted unification and show how to learn the unification
weights by applying machine learning techniques. For making large-scale processing and
parameter learning in an abductive logic framework feasible, we employ a new efficient
implementation of weighted abduction based on Integer Linear Programming. We then propose
several linguistically motivated features for blocking incorrect unifications and employ different
large-scale world knowledge resources for establishing unification via inference. We provide a
large-scale evaluation on the CoNLL-2011 shared task dataset, showing that all features and
almost all knowledge components improve the performance of our system.

KEYWORDS: weighted abduction, coreference resolution, Integer Linear Programming.



1 Introduction

In this paper, we explore coreference resolution in a discourse processing framework based on a
mode of inference called weighted abduction (Hobbs et al., 1993). This framework is appealing
because it is a realization of the observation that we understand new material by linking it with
what we already know. It instantiates in natural language understanding the more general
principle that we understand our environment by coming up with the best explanation for the
observables in the environment. Hobbs et al. (1993) show that the lowest-cost abductive proof
provides the solution to a whole range of natural language pragmatics problems, such as word
sense disambiguation, anaphora and metonymy resolution, interpretation of noun compounds
and prepositional phrases and detection of discourse relations. For examples of the application
of weighted abduction to discourse processing see (Charniak and Goldman, 1991; Inoue and
Inui, 2011; Ovchinnikova et al., 2011; Ovchinnikova, 2012).

If weighted abduction is applied to discourse processing, coreference links naturally follow as a
by-product of constructing best explanations. In weighted abduction, coreference resolution
is equal to unification of predications; see Sec. 3.1. Similarly, if deductive model building is
applied to discourse interpretation, coreference links result from the model minimality. Both
inference approaches are based on the idea that predications having the same predicates
describe the same situation and therefore their arguments can be assumed to be equal if no
logical contradictions follow. If the necessary knowledge is missing from the knowledge base,
both the deductive and the abductive procedures are likely to miss relevant coreference links
and establish wrong links (overmerge entities). The overmerging problem is a serious obstacle
in applying reasoning to discourse processing, because it leads to a large number of incorrect
inferences; see (Ovchinnikova, 2012) for examples. There have been attempts to employ
semantic similarity for merging predications in a deductive framework (Dellert, 2011) and
attempts to use linguistically motivated constraints in order to prohibit incorrect unification
in an abductive framework (Ovchinnikova et al., 2011; Ovchinnikova, 2012). However, the
issue of overmerging was never systematically studied and the proposed solutions were never
evaluated. In this paper, we investigate whether adding linguistically motivated features can
help to block incorrect links in an inference-based framework.

A lot of effort in NLP was put into coreference resolution systems ranging from rule-based
(Lee et al., 2011, etc.) to machine learning-based resolvers (Soon et al., 2001; Ng and Cardie,
2002; Fernandes et al., 2012, etc.); see (Ng, 2010) for a detailed survey. Coreference resolution
may require deep understanding of text, access to world knowledge, and inference ability. For
example, (Levesque, 2011) considers twin sentences such as Ed shouted at Tim because he
crashed the car and Ed shouted at Tim because he was angry. In order to resolve coreference in
these sentences one requires world knowledge about people shouting when being angry and
people shouting at someone who made a mistake, e.g., crashed a car. Surprisingly, most of
the contemporary coreference resolution systems including the winners of the CoNLL-2011
and CoNLL-2012 shared tasks (Lee et al., 2011; Fernandes et al., 2012) do not exploit any
world knowledge. There exist attempts to resolve coreference based on world knowledge
resources such as WordNet hierarchy, Wikipedia, semantic similarity, narravite chains (Ponzetto
and Strube, 2006; Ng, 2007; Irwin et al., 2011; Rahman and Ng, 2012). Unfortunately, the
corresponding resolvers were either not evaluated in large-scale challenges or did not show
convincing performance in the challenges. Thus, the question remains open whether employing
world knowledge can improve coreference resolution in large unfiltered corpora. In this paper,
we investigate whether adding world knowledge for establishing more coreference links can



improve coreference resolution. In the world knowledge employed, our work is most similar
to the study on twin sentences presented in (Rahman and Ng, 2012). However, instead of
using world knowledge for generating features in a machine learning framework, we explore
inference-based discourse processing. Regarding inference, our method may seem related to the
coreference resolution research based on Markov Logic Networks (MLNs) (Poon and Domingos,
2008; Song et al., 2012). However, previous MLN-based work on coreference resolution does
not incorporate inference rules based on world knowledge.

The key contributions of our work are the following. First, we propose a novel solution to
the overmerging problem in an inference-based framework. We extend (Hobbs et al., 1993)’s
weighted abduction in order to accommodate unification weights and show how to learn
the weights by applying machine learning techniques. For making large-scale processing
and parameter learning in an abductive logic framework feasible, we employ a new efficient
implementation of weighted abduction based on the Integer Linear Programming technique
(Inoue and Inui, 2011).1 Second, we propose several linguistically motivated features for
blocking incorrect unifications and we employ different large-scale world knowledge resources
for establishing unification via inference. Third, we report on a large-scale evaluation showing
that all features and knowledge components improve the performance.

The structure of this paper is as follows. In Sec. 2, we introduce weighted abduction and its
ILP-based implementation. Section 3 describes our discourse processing pipeline based on
weighted abduction and discusses the overmerging problem, our solution to it, and types of
knowledge we employ for generation of features and axioms. Section 4 presents the experiments
on coreference resolution. The final section concludes the paper.

2 Abductive Inference

2.1 Weighted Abduction

Abduction is inference to the best explanation. Formally, logical abduction is defined as follows:

Given: Background knowledge B, observations O, where both B and O are sets of first-order
logical formulas,

Find: A hypothesis H such that H ∪ B |= O, H ∪ B 6|=⊥, where H is a set of first-order logical
formulas. We say that p is hypothesized if H |= p, and that p is explained if (∃q) q→ p ∈ B and
q is hypothesized or explained.

Typically, there exist several hypotheses H explaining O. Each of them is called a candidate
hypothesis. To rank candidate hypotheses according to plausibility, we use the framework of
weighted abduction as defined by Hobbs et al. (1993). In this framework, observation O is
a conjunction of propositions existentially quantified with the widest possible scope. Each
proposition has a positive real-valued cost. We use the notation P$c to indicate that proposition
P has cost c and cost(P) to represent the cost of P.

The background knowledge B is a set of first-order logic formulas of the form Pw1
1 ∧ ...∧ Pwn

n →
Q1∧ ...∧Qm. All variables occurring in the antecedent of such axioms are universally quantified
with the widest possible scope. Other variables are existentially quantified within the scope
of the universal quantifiers. Propositions in the antecedents are assigned positive real-valued
weights. We use the notation Pw to indicate that proposition P has weight w.

1There has been work on applying ILP to coreference (Finkel and Manning, 2008; Denis and Baldridge, 2009), but
with no relationship with logical inference.



The two main inference operations in weighted abduction are backward chaining and unification.
Backward chaining is the introduction of new assumptions given an observation and background
knowledge. For example, given O = ∃x(q(x)$10) and B = {∀x(p(x)1.2→ q(x))}, there are two
candidate hypotheses: H1 = ∃x(q(x)$10) and H2 = ∃x(p(x)$12). In weighted abduction, a cost
function f is used to calculate assumption costs. The function takes two arguments: costs of the
propositions backchained on and weight of the assumption. Usually, a multiplication function
is used, i.e. f (c, w) = c · w, where c is the cost of the propositions backchained on and w is
weight of the corresponding assumption. For example, if q(x) costs $10 and w of p is 1.2 in the
example above, then assuming p in H2 costs $12.

Unification is the merging of propositions with the same predicate name by assuming that
their arguments are same. For example, O = ∃x , y(p(x)$10 ∧ p(y)$20 ∧ q(y)$10). There is a
candidate hypothesis H = ∃x , y(p(x = y)$10 ∧ x = y$0 ∧ q(x = y)$10), where p(x)$10 and
p(y)$20 are merged by assuming x = y (called variable unification assumption). Hobbs et al.
(1993) assign the smallest cost to the result of the unification (i.e. $10), and zero cost to
the variable unification assumption. This principle often causes incompatible entities to be
identified (e.g., a dog and a cat) on the basis of slender evidence, since unification always
reduces the cost of hypothesis. In order to address this issue, we propose to assign a cost to the
variable unification assumption. We use a weighted feature function to assign the cost, where
the appropriate weights are learnable from the dataset (see Sec. 3 for further details).

Both operations (backchaining and unification) can be applied to an observation as many times
as possible to generate a possibly infinite set of candidate hypotheses. Henceforth, we denote
HO to represent a set of all possible candidate hypotheses for O. Weighted abduction defines a
cost of candidate hypothesis H as cost(H) =

∑

h∈H cost(h), where h is an atomic conjunct in H
also called an elemental hypothesis (e.g., p(x) in the above H). In this framework, minimum-cost
explanations are best explanations.

2.2 ILP-based Weighted Abduction
Recently, an implementation of weighted abduction based on Integer Linear Programming (ILP)
was developed by Inoue and Inui (2011). In this approach the abductive reasoning problem
is formulated as an ILP optimization problem. We adopt this solution since (i) the ILP-based
reasoner is significantly more efficient than existing implementations of weighted abduction
(Inoue and Inui, 2011), and (ii) its declarative nature makes it is highly extensible (Sec. 3).

Given B and O, the framework first enumerates set P of potential elemental hypotheses (atomic
assumptions). Then it generates ILP variables and constraints based on this set to represent
all possible candidate hypotheses. The four main ILP variables are hp ∈ {0,1}, rp ∈ {0,1},
up,q ∈ {0, 1}, and sx ,y ∈ {0, 1}, where p, q are potential elemental hypotheses and x , y are first-
order logical variables or constants used in P. hp is used to represent whether p is hypothesized
(hp = 1) or not (hp = 0). rp is used to represent whether p pays its cost (rp = 0) or not (p is
explained, rp = 1). The ILP objective function is as follows.

min. cost(H) =
∑

p∈{p|p∈P,hp=1,rp=0}

cost(p) (1)

Thus, the cost of H is the sum of the costs of p ∈ P, such that p is included in the hypothesis
(hp = 1) and is not explained (rp = 0). That is, the backchaining bottoms out in p.



The space of candidate hypotheses is restricted by several ILP constraints. For example, one of
the constraints allows us to set rp = 1 (p does not pay its cost) only if at least one proposition
q ∈ Q, where Q is a set of propositions that explain p, is hypothesized (hq = 1). The ILP
formulation of this constraint is rp ≤

∑

q∈Q hq.

In order to represent unification of two propositions p and q we introduce variables u and s,
such that up,q = 1 if p and q are unified and up,q = 0 otherwise; sx ,y = 1 if variables x and y are
set to be equal and sx ,y = 0 otherwise. Additional constraints are defined on these variables. For
example, p(x1, x2, ..., xn) and p(y1, y2, ..., yn) can be unified (up(x1,x2,...,xn),p(y1,y2,...,yn) = 1) only
if their corresponding arguments are assumed to be equal (for all i ∈ {1,2, ..., n}, sx i ,yi

= 1).
This is captured by the following ILP constraint: n · up(x1,x2,...,xn),p(y1,y2,...,yn) ≤

∑n
i=1 sx i ,yi

.

Formulation of the ILP constraints corresponding to variable inequality is rather straightfor-
ward.2 For each pair of variables x and y such that x 6= y ∈ P, the following equality is
introduced: sx ,y = 0.

3 Coreference Resolution in ILP-based Abductive Framework

3.1 Abduction for Discourse Processing

Abductive reasoning can be used to recover implicit information from natural language texts.
The implicit information includes semantic relations between discourse entities, anaphoric
relations, character’s intentions, etc; see (Hobbs et al., 1993) for detailed examples.

A logical form (LF) of a text represents observations, which need to be explained by background
knowledge. In our discourse processing pipeline, a text is first input to the English parser Boxer
(Bos, 2008). For each segment, the parse produced by Boxer is a first-order fragment of the
DRS language used in Discourse Representation Theory (Kamp and Reyle, 1993). An add-on to
Boxer converts the DRS into a logical form in the style of (Hobbs, 1985).

The LF is a conjunction of propositions, which have generalized eventuality arguments that can
be used for showing relationships among the propositions. According to (Hobbs, 1985), any
predication in the logical notation has an extra argument, which refers to the “condition” of
that predication being true. Thus, in the logical form John(e1, j)∧ run(e2, j) for the sentence
John runs, e2 is a running event by John and e1 is a condition of j being named “John”.

In the context of discourse processing, we call a hypothesis explaining a logical form an
interpretation of this LF. The interpretation of the text is carried out by an abductive system.
The system tries to prove the logical form of the text, allowing assumptions where necessary.
Where the system is able to prove parts of the LF, it is anchoring it in what is already known
from the overall discourse or from a knowledge base. Where assumptions are necessary, it is
gaining new information.

Let us illustrate the procedure with an example implying coreference resolution. Suppose we
need to interpret the text John gave Bill a book; he was happy to have it. A simplified logical
form of this sentence is as follows:

John(e1, x1)∧ give(e2, x1, x2, x3)∧ Bil l(e3, x2)∧ book(e4, x3)∧ he(e5, x4)∧ have(e6, x4, x5)∧
i t(e7, x5)

Suppose our knowledge base contains the following axioms

2See (Inoue and Inui, 2012) for the ILP representation of negated propositions.



(1) give(e1, x1, x2, x3)→ get(e2, x2, x3)
(2) get(e1, x1, x2)→ have(e2, x1, x2)

Given these axioms, we can backchain on have(e6, x4, x5) to give(e0, u, x5, x4). After unifying
this proposition with give(e2, x1, x2, x3), we can infer the equality x2 = x4 and x3 = x5, which
corresponds to linking he to Bill and it to book in the sentence.

3.2 Weighted Unification

Frequently, the lowest-cost interpretation results from identifying two entities with each other,
so that their common properties only need to be proved or assumed once. This feature of the
algorithm is called “unification”, and is one of the principal methods by which coreference
is resolved. A naive approach to coreference in an inference-based framework is to unify
propositions having the same predicate names unless it implies logical contradictions (Hobbs
et al., 1993; Bos, 2011). However, in situations when knowledge necessary for establishing
contradictions is missing, the naive procedure results in overmerging. For example, given
O = animal(e1, x)∧ animal(e2, y), weighted abduction incorrectly assumes x equals y even
when dog(e3, x) and cat(e4, y) are observed. For John runs and Bill runs, with the observations
O = John(e1, x)∧ run(e2, x)∧ Bil l(e3, y)∧ run(e4, y), weighted abduction assumes John and
Bill are the same individual just because they are both running. If we had complete knowledge
about disjointness (dog and cat are disjoint, people have unique first names), the overmerging
problem might not occur because of logical contradictions. However, it is not plausible to
assume that we would have an exhaustive knowledge base.

In this study, we impose costs on variable unification assumptions in order to avoid the
overmerging. If the unification weights are introduced, unification does not always reduce the
overall cost of the hypothesis anymore, which loosens the assumption that all propositions with
the same predicate names are coreferential.

How can we define unification weights? The cost of a variable unification assumption, say
x = y, depends on the properties of x and y. For example, it depends on lexico-syntactic
properties. If x is different from y or x writes y are observed in a text then its unlikely that x and
y refer to the same entity. At the same time, observations like dog(x)∧ animal(y) serve as an
evidence that x and y might be coreferential.

We extend the ILP-based weighted abduction framework developed by (Inoue and Inui, 2011)
and use a feature-based linear function φ(x , y) to determine a cost of x = y. Features are
based on various types of knowledge (see Sec. 3.3). In order to compute the weight of each
feature, we parametrize the feature function by a n-dimensional real-valued weight vector
w= {w1, w2, ..., wn}, and propose to tune w in a supervised manner.

In order to exploit the cost of variable unification assumptions in the reasoning process, we
extend the ILP-based objective function for weighted abduction equation (1) as follows:

min. cost(H;w) =
1

Z

∑

p∈{p|p∈P,hp=1,rp=0}

cost(p) +
1

|TP |2
∑

x ,y∈TP

n
∑

i

wi · fx ,y,i , (2)

where Z is a total cost of observations, and TP is a set of logical atomic terms that appear in
the set of potential elemental hypotheses, and fx ,y,i ∈ {0, 1} is a newly introduced ILP variable
that denotes the value of i-th feature for x , y. We normalize each term so that the size of
observations and the number of logical terms does not affect to the strength of each term.



The features can be designed by a user. The value of each feature depends on the presence
of certain propositions in the corresponding candidate hypothesis. For example, the value
of feature fx ,y,i can depend on the presence of dog(x) and cat(y). This dependence is
represented by the following ILP constraint: −m+ 1 ≤ m · fx ,y,i −

∑m
j=1 hpm

≤ 0, where h is
an ILP variable (see Sec. 2.2) and p1, p2, ..., pm are propositions on which fx ,y,i depends (i.e.
fx ,y,i = 1⇔ hp1

= 1∧ hp2
= 1∧ ...∧ hpm

= 1).

Weight Learning

In order to train weight vector w, we employ the modified version of the Passive-Aggressive (PA)
algorithm (Crammer et al., 2006), which is a supervised large-margin online learning algorithm
applicable to a wide range of linear classifiers ranging from binary classifiers to structured
predictors. The original PA algorithm requires the complete set of gold standard labels to be
present in the training set. In our case, however, the training set is annotated just with the
coreference links (unification sets), but not with other assumptions supporting unification. For
example, dog(x)∧ animal(y) will be annotated with x = y, but not with dog(y). Therefore
we modified the original algorithm for learning weights from a partial gold standard.

Algorithm 1 depicts our learning algorithm. Every time we receive a training instance (O, Ht)
from a set D of training instances, where O is an observation and Ht is a set of gold standard
variable unification assumptions for O, we first find the lowest-cost hypothesis Ĥ given the
current weight vector (line 3). If variable unification assumptions made in Ĥ are inconsistent
with Ht (e.g., dog and animal are unified in Ĥ, but not in Ht), we train the weight vector
(line 5–7). In order to train the vector, we find the lowest-cost hypothesis H among candidate
hypotheses that are consistent with Ht (line 5). To get H, we add ILP constraints for all x = y in
Ht(sx ,y = 1) and for all x 6= y in Ht(sx ,y = 0) to the ILP optimization problem.

The new weight vector w should satisfy the following conditions: (i) cost(H;w) is less than
cost(Ĥ;w) by at least a margin ∆(Ĥ, H), and (ii) the difference between current weight vector
w′ and new weight vector w is minimal. In line 6, we calculate how much w should be
corrected, where C is a parameter of the PA algorithm that is the aggressiveness of weight
updates. φ(Ĥ) and φ(H) are the sums of feature vectors for variable unification assumptions
in Ĥ and H respectively. ∆(Ĥ, H) is a loss function that measures how different Ĥ and H are.
The more different Ĥ and H are the larger an ensured margin is. In our experiments, we use
the loss function ∆P(Ĥ, H) =WO/TO, where TO is the total number of pairs of logical atomic
terms in the observation and WO is the total number of variable unification assumptions for
observed logical terms in Ĥ that disagrees with H. We implemented this training algorithm in a
distributed learning framework (McDonald et al., 2010).

3.3 Features

Each feature we use is defined for pairs of unifiable variables (v1, v2). The features are summa-
rized in Table 1.

Incompatible properties If two entities have incompatible properties, they are unlikely to be
identical. We use WordNet antonymy (black – white) and sibling relation (cat – dog) to derive
incompatible properties. Moreover, we assume that two proper names not belonging to the
same WordNet synset are unlikely to refer to the same entity. Correspondingly, we generate
three binary features A, S, and P (see Table 1).



Algorithm 1 Passive-Aggressive algorithm for partial gold standard dataset.
1: for all i ∈ {1,2, ..., N} do
2: for all (O, Ht) ∈ D do
3: Ĥ ← arg min

H∈HO

cost(H;w)

4: if Ĥ 6|= Ht then
5: H ← arg min

H∈HO

cost(H;w) s.t. H |= Ht

6: τ←min(C , cost(H;w)−cost(Ĥ;w)+∆(H,Ĥ)
||φ(Ĥ)−φ(H)||2

)

7: w←w+τ(φ(H)−φ(Ĥ))
8: end if
9: end for

10: end for

Feature type Feature

Incompatible
A(v1, v2) =

�

1 if ∃p1(.., v1, ..), p2(.., v2, ..): p1, p2 are WN antonyms;
0 otherwise

properties S(v1, v2) =
�

1 if ∃p1(.., v1, ..), p2(.., v2, ..): p1, p2 are WN siblings;
0 otherwise

P(v1, v2) =







1 if ∃p1(e1, v1), p2(e2, v2): p1, p2 are proper names,
not in the same WN synset;
0 otherwise

Conditional unification CU(v1, v2) =







1 if ∃p1(v1, x1, .., xn), p2(v2, y1, .., yn):
p1, p2 are frequent predicates
and ∀i ∈ {1, .., n} : sxi ,yi

= 1;
0 otherwise

Argument inequality
SA(v1, v2) =

�

1 if ∃p(.., v1, .., v2, ..);
0 otherwise

EA(v1, v2) =
�

1 if ∃p(v1, .., e1, ..), p(v2, .., e2, ..): sv1 ,v2
∧ se1 ,e2

= 0;
0 otherwise

Explicit non-identity N I(v1, v2) =
�

1 if ∃p(e, v1, v2): p is a non-identity predicate;
0 otherwise

Functional relations FR(v1, v2) =







1 if ∃p(e1, v1, x1), p(e2, v2, x2):
p is a functional relation predicate
and x1 6= x2 and v1 = v2;
0 otherwise

Modality M(v1, v2) =
�

1 if |MC Pred(v1)∩MC Pred(v2)|= ;;
0 otherwise

Common properties
C P1(v1, v2) = |C Pred(v1, v2)|,
C P2(v1, v2) =

∑

p∈C Pred(v1 ,v2)
F req(p)

C P3(v1, v2) =
∑

p∈C Pred(v1 ,v2)
W NAbst(p)

Derivational relation DR(v1, v2) =







1 if ∃p1(v1, ..), p2(v2, ..):
p1, p2 are derivationally related;
0 otherwise

Table 1: Summary of the feature set.

Conditional unification If two entities have very frequent common properties, these proper-
ties usually do not represent a good evidence for the entities to be identical. For example, given
John goes and he goes, it might be incorrect to assume that John and he are coreferential just



because they are both going. We want to allow unification of frequent predications (e.g., go)
only if there is other evidence for their arguments to be unified. In order to capture this idea,
we introduce binary feature CU and compute its value as follows: If v1 and v2 occur as first
arguments of propositions p1(v1, x1, .., xn), p2(v2, y1, .., yn), such that p1, p2 are frequent predi-
cates, and ∀i ∈ {1, .., n} : sx i ,yi

= 1 (where s is an ILP variable, see Sec. 2.2) then CU(v1, v2) = 1;
otherwise CU(v1, v2) = 0.

Argument inequality We use two argument constraints to generate features. First, we assume
that arguments of the same proposition usually cannot refer to the same entity. Reflexive verbs
represent an exception (e.g., John cut himself), but we assume that these cases are resolved by
the Boxer semantic parser (see Sec. 3.1) and do not require inference. We create binary feature
SA and compute its value as follows: If v1 and v2 occur as arguments of the same proposition
then SA(v1, v2) = 1; otherwise SA(v1, v2) = 0.

One more feature we introduce concerns event variables. For example, given the sentences John
said that Mary was reading and John said that he was tired we do not want to unify both say
propositions, because in each case something different has been said. Predicates like say usually
have clauses as their arguments. Unifying clauses just because they are arguments of the same
predicate is often incorrect. In our framework, a clause is represented by an event variable,
i.e. a variable which is a first argument of the head of the clause. We make the following
assumption: If two unifiable propositions p(v1, .., e1, ..), p(v2, .., e2, ..) have event variables as
their arguments, then they are unlikely to be unified if the event arguments have not been
already unified. We create binary feature EA and compute its value as follows: if (i) there
are two unifiable propositions p(v1, .., e1, ..), p(v2, .., e2, ..) that have event variables e1, e2 as
non-first arguments, (ii) e1 6= e2, and (iii) v1 = v2, then EA(v1, v2) = 1; otherwise EA(v1, v2) = 0.

Explicit non-identity We manually collected a set of 33 predicates indicating explicit non-
identity, e.g., similar to, different from. Presence of these predicates in a logical form indicates
that their second and third arguments are unlikely to refer to the same entity. We create binary
feature N I and compute its value as follows: If there is p(e, v1, v2) and p is a predicate indicating
explicit non-identity then N I(v1, v2) = 1; otherwise N I(v1, v2) = 0.

Functional relations A binary relation r is functional if ∀x , y1, y2 : r(x , y1)∧ r(x , y2)→ y1 =
y2. For example, a person can be a son of exactly one man. Lin et al. (2010) automatically learn
functional relations from a corpus and assign a confidence score to each extracted relation. We
use the set of functional relations generated by Lin et al. (2010) in order to generate feature
FR. We extract 1,661 functional relations from the dataset. We create a binary feature FR and
compute its value as follows: if (i) there are two predicates p(e1, v1, x1), p(e2, v2, x2), where p
indicates a functional relation, (ii) x1 6= x2, and (iii) v1 = v2 then FR(v1, v2) = 1; otherwise
FR(v1, v2) = 0.

Modality We assume that two predications having different modality are unlikely to refer
to the same entity. For example, given John runs and he does not/might run, John and he are
unlikely to be coreferential. Let M Pred(v) be a set of predicates that represent the modality
of event v. In our experiments, we consider three modality-denoting predicates produced
by the Boxer semantic parser (nec, pos, not), and verbal predicates (e.g., think) as modality-
denoting predicates. We create binary feature M and compute its value as follows: if there are
two unifiable verbal propositions p(v1, ...), p(v2, ...) and |M Pred(v1) ∩ M Pred(v2)| = ; then
M(v1, v2) = 1; otherwise M(v1, v2) = 0.



Common properties We assume that the more properties two entities share the more likely
it is that they are identical. For example, given John was jogging, while Bill was sleeping. He jogs
every day, John and he are likely to be coreferential, because they are both arguments of jog. Let
C Pred(v1, v2) be a set of pairs of predicates p1, p2, such that v1, v2 occur at the same argument
positions of p1 and p2 while p1 are p2 equal or they occurs in the same WordNet synset.
We generate three types of real-valued features: C P1(v1, v2) = |C Pred(v1, v2)|, C P2(v1, v2) =
∑

p∈C Pred(v1,v2)
F req(p), and C P3(v1, v2) =

∑

p∈C Pred(v1,v2)
W NAbst(p), where F req(p) is a word-

frequency of p from the Corpus of Contemporary American English3, and W NAbst(p) is a level
of abstraction of p in the WordNet hierarchy (the number of steps to the root).

Derivational relations We use WordNet derivational relations between nouns and verbs in
order to link nominalizations and verbs. For example, given Sales of cars grew. The growth
followed year-to-year increases, grew and growth are coreferential. We generate binary feature
DR to capture these links (see Table 1).

3.4 Knowledge for Inference

The abductive reasoning procedure is based on a knowledge base consisting of a set of axioms.
In the experiment described in this paper we employed the following background knowledge.

WordNet The dataset we use for evaluation (see Sec. 4) is annotated with WordNet (Fellbaum,
1998) senses. Given this annotation, we mapped word senses to WordNet synsets. Given
WordNet relations defined on synsets, we generate axioms of the following form:

Hyperonymy, instantiation: s ynset1(s1, x)→ s ynset2(s2, x)
Causation, entailment: s ynset1(s1, e1)→ s ynset2(s2, e2)
Meronymy, membership: s ynset1(s1, x1)→ s ynset2(s2, x2)∧ o f (x1, x2)

We extracted 22,815 axioms from WordNet.

FrameNet We generated axioms mapping predicates with their arguments into FrameNet
(Ruppenhofer et al., 2010) frames and roles. For example, the following axiom maps the verb
give to the GIVING frame.

GIVING(e1) ∧ DONOR(e1, x1) ∧ RECIPIENT(e1, x2) ∧ THEME(e1, x3)→ give(e1, x1, x3) ∧ to(e2, e1, x2)

Weights of these axioms are based on frequencies of lexeme-frame mappings in the annotated
corpora provided by the FrameNet project. Moreover, we used FrameNet frame relations to
derive axioms. An example of an axiomatized relation is given below.

GIVING(e1) ∧ DONOR(e1, x1) ∧ RECIPIENT(e1, x2) ∧ THEME(e1, x3)→
GETTING(e2) ∧ SOURCE(e2, x1) ∧ RECIPIENT(e1, x2) ∧ THEME(e1, x3)

In order to generate the FrameNet axioms, we used the previous work on axiomatizing FrameNet
by Ovchinnikova (2012). We generated 12,060 axioms from the dataset. In addition, we used
a resource assigning possible lexical fillers disambiguated into WordNet synsets to FrameNet
roles (Bryl et al., 2012). For example, the role THEME of the GIVING frame is mapped to synsets
object#n#1 and thing#n#1. Given this information, the following axiom is generated.

thing#n#1(s, x)→ GIVING(e1) ∧ THEME(e1, x)

3http://www.wordfrequency.info/



Weights of these axioms are based on the scores provided by Bryl et al. (2012). We generated
24,571 axioms from the dataset.

Narrative chains Similar to (Rahman and Ng, 2012), we employ narrative chains learned
by Chambers and Jurafsky (2009), which were shown to have impact on resolving complex
coreference; see (Rahman and Ng, 2012) for details. Narrative chains are partially ordered
sets of events centered around a common protagonist that are likely to happen in a sequence.
Knowledge about such sequences can facilitate coreference resolution. For example, given
Max fell, because John pushed him we know that Max and him are coreferential, because we
know that an object of the pushing event can be a subject of the falling event. For example, we
generate the following axioms.

Script#1(s, e1, x1, u)→ arrest(e1, x1, x2, x3)∧ police(e2, x1)
Script#1(s, e1, x1, u)→ charge(e1, x1, x2, x3)∧ police(e2, x1)

Weights of these axioms are based on the scores provided by (Chambers and Jurafsky, 2009).
We extract 1,391,540 axioms from the dataset.

3.5 Disambiguation of Named Entities

In the experiment on coreference resolution, we extended Boxer’s output with the information
inferred by the AIDA tool. The AIDA tool (Yosef et al., 2011) is a framework for entity detection
and disambiguation. Given a natural language text, it maps mentions of ambiguous names onto
canonical entities like people or places, registered in a knowledge base like DBpedia (Bizer
et al., 2009) or YAGO (Suchanek et al., 2008). For example, mentions A. Einstein and Einstein
will be both mapped to the YAGO node Albert_Einstein. An add-on to our pipeline assigns the
same variables to each two named entities disambiguated by AIDA into the same YAGO node.

4 Evaluation

We evaluate coreference resolution in our weighted abduction framework using the CoNLL-
2011 shared task dataset (Pradhan et al., 2011). The CoNLL-2011 dataset was based on the
English portion of the OntoNotes 4.0 data (Hovy et al., 2006). OntoNotes is a corpus of large
scale annotation of multiple levels of the shallow semantic structure in text. The OntoNotes
coreference annotation captures general anaphoric coreference. Note that OntoNotes captures
explicit coreference links only, while our procedure also discovers implicit semantic overlap.

The CoNLL-2011 shared task was to automatically identify mentions of entities and events in
text and to link the corefering mentions together to form entity/event chains. In our experiment,
we do not identify mentions, but only compute precision and recall of the inferred coreference
links given the mentions identified in the gold standard annotation.

In the CoNLL-2011 shared task, four metrics were used for evaluating coreference performance:
MUC, B3, CEAF, and BLANC. The evaluation metrics are described in (Pradhan et al., 2011).
Each of the metric tries to address the shortcomings of the earlier metrics. MUC is the oldest
metric; it has been criticized for not penalizing overmerging (Recasens and Hovy, 2010). Since
one of the goals of this study is to reduce overmerging in our inference-based framework,
this metric does not seem to be representative for us. The B3 and CEAF metrics were also
considered to produce counterintuitive results (Luo, 2005; Recasens and Hovy, 2010). BLANC,
as the most recent evaluation metric, overcomes the drawbacks of MUC, B3, and CEAF. The
definition formula of BLANC given in (Recasens and Hovy, 2010) is replicated in Table 2, where



rc, wc, rn, wn indicate the number of right coreference links, wrong coreference links, right
non-coreference links, and wrong non-coreference links correspondingly.

Score Coreference Non-coreference Metric

P Pc =
rc

rc +wc
Pn =

rn

rn+wn
BLANC-P =

Pc + Pn

2

R Rc =
rc

rc+wn
Rn =

rn

rn+wc
BLANC-R =

Rc + Rn

2

F Fc =
2PcRc

Pc + Rc
Fn =

2PnRn

Pn + Rn
BLANC =

Fc + Fn

2

Table 2: Definition formula for BLANC.
We rely on BLANC when drawing conclusions, but present values of the other three evaluation
metrics as well.

4.1 Results and Discussions

We intend to evaluate whether the introduction of linguistically motivated features (Sec. 3.3)
and world knowledge (Sec. 3.4) enables us to outperform the naive inference-based approach
implying that predications with the same names refer to the same entities. In order to evaluate
the impact of each feature and knowledge component separately, we run ablation tests.

Note that for 145 of 6,894 sentences in the test set, no logical forms were produces by the Boxer
semantic parser. Moreover, in the run employing WordNet-based inference, inference results
could not be produced for 101 of 303 test texts because of the computational complexity of
reasoning. In order to keep the comparison fair, we use evaluate all features and knowledge
components on the same set of 202 texts, for which inference results were produced in all runs.

Table 3 represents the results of the ablation tests. We test the features listed in Table 1 as well
as axioms extracted from WordNet (WN), FrameNet (FN), narrative chains (NC) and knowledge
provided by AIDA (AI). All features representing incompatible properties are tested together
(I P in Table 3). Similarly, all argument inequality features (AI) and common property features
(C P) are tested together.

The first row represents results for the run without employing any features and knowledge
resources. In the second run, world knowledge is employed without linguistic features. These
two runs correspond to the original weighted abduction approach to unification implying
unification of all predications having the same predicate names. We see that adding knowledge
results in lower values of BLANC. This happens because of the overmerging problem increased
by additional coreference links inferred with the help of the employed knowledge resources.

Then we test linguistic features intended to block incorrect unification (I P, CU , AI , N I , FR,
M) one by one. Each of the features improves the BLANC values; conditional unification CU
has the most significant impact.4 The common property feature (C P) and the derivational
relations feature (M) introduce additional unifications. Therefore we test them together with
the best combination of the unification blocking features (I P+CU+AI+N I+FR+M). Both
features have a positive impact as compared to the run employing just the unification blocking
features. Now we test each world knowledge component using the best combination of features

4It is interesting to note that MUC and B3 evaluation metrics represent completely the opposite picture, which
supports the criticism of these metrics for tolerating overmerging (Recasens and Hovy, 2010).



(I P+CU+AI+N I+FR+M+C P). Each knowledge component except for WordNet has a positive
impact in terms of BLANC as compared to the run using the best combination of all features.

Features Inference MUC B3 CEAFE BLANC
I P CU AI N I FR M C P DR WN FN NC AI R P F R P F R P F R P F

73.7 69.6 71.6 75.5 39.9 52.2 30.7 36.1 33.2 53.0 51.7 39.1p p p p
72.3 68.6 70.4 74.6 41.6 53.4 32.3 37.1 34.5 52.3 51.3 39.9p
71.2 68.8 70.0 73.2 41.8 53.2 32.8 35.9 34.3 53.5 51.9 41.0p
33.4 58.2 42.5 42.5 76.2 54.6 59.6 28.6 38.7 55.7 60.9 56.6p
70.1 68.4 69.3 72.3 41.8 53.0 33.1 35.3 34.2 53.0 51.6 41.0p
70.4 68.5 69.4 72.5 41.6 52.9 32.3 34.8 33.5 52.8 51.5 40.5p
70.4 68.5 69.5 72.7 41.7 53.0 32.5 35.0 33.7 52.9 51.6 40.7p
70.3 68.4 69.3 72.6 41.9 53.1 32.8 35.4 34.1 53.3 51.7 41.0p p p p p p p
39.4 62.0 48.2 46.6 74.1 57.2 59.6 30.9 40.8 58.4 61.6 59.4p p p p p p p
36.6 61.2 45.8 44.6 75.8 56.1 59.8 29.6 39.6 57.5 61.4 58.6p p p p p p p p p
36.2 60.3 45.2 44.5 75.3 56.0 59.7 29.6 39.6 57.4 61.2 58.5p p p p p p p p p
40.7 63.1 49.5 48.5 73.2 58.4 58.6 30.8 40.4 59.5 61.0 60.1p p p p p p p p p
40.1 63.0 49.0 47.4 74.0 57.8 59.1 30.8 40.5 59.0 61.5 59.9p p p p p p p p p
42.5 64.3 51.1 49.1 72.8 58.7 58.6 31.5 41.0 59.7 61.5 60.4p p p p p p p p p p p p
42.9 64.4 51.5 50.5 73.3 59.9 59.4 32.8 42.3 59.9 60.9 60.3

Table 3: Ablation tests of features and world knowledge.

The results of the ablation tests show significant improvement over the naive approach (by
more than 20% F-measure), but can we claim that we solved the overmerging problem? We
perform one more experiment in order to get a deeper understanding of the performance of our
discourse processing pipeline in coreference resolution.

The best performance in the CoNLL-2011 shared task was achieved by the Stanford NLP system
(Lee et al., 2011) that is a rule-based resolver encoding traditional linguistic constraints on
coreference. We replicate the results of Stanford NLP as applied to the CoNLL-2011 dataset; see
the first row in Table 4. We use the output of Stanford NLP only for those texts, which could
be processed by our discourse processing pipeline, therefore the recall/precision values for
Stanford NLP in Table 4 are lower than the original results published in (Lee et al., 2011).

We aim at checking whether enriching the output of the state-of-the-art coreference resolver
with additional links inferred by our system using all features and all world knowledge will
improve the performance. The evaluation of the “merged” output is presented in the second
row of Table 4 (SNLP+WA). Unfortunately, the precision of SNLP+WA is lower than that of
SNLP alone. This happens because adding world knowledge results in new coreference links,
while the overmerging problem is not completely solved. SNLP discovers 2277 out of 7557
correct coreference links and 40247 out of 41527 correct non-coreference links. In the merged
output, there are more correct coreference links (3065), but less correct non-coreference links
(36959). Note that Stanford NLP performs noun phrase coreference resolution only, while our
system is not restricted to noun phrases and can also discover implicit coreference links.

System MUC B3 CEAFE BLANC
R P F R P F R P F R P F

SNLP 42.8 74.4 54.3 50.4 85.2 63.4 66.3 32.6 43.7 63.5 76.2 66.7
SNLP+WA 52.0 70.1 59.7 57.3 72.7 64.1 60.5 37.2 46.1 64.8 64.7 64.7

Table 4: Performance of the Stanford NLP system (SNLP) compared to performance of our
weighted abduction engine enriched with Stanford NLP (SNLP+WA) output.

The main cause of overmerging is related incompatible properties. We anticipated the incom-



patible properties to have a more significant impact on precision than they actually had in the
ablation tests. But in the current study, we consider only those properties to be incompatible
which are expressed syntactically in the same way, e.g., Japanese goods vs. German goods.
However, the same property can be expressed by a wide variety of syntactic constructions, e.g.,
goods from Germany, goods produced in Germany, Germany produced goods etc. In order to
discover deeper contradictions, we have to work on normalization of the representation of prop-
erties, e.g., use origin:Germany:x instead of German(e, x) and from(e1, x , y)∧Germany(e2, y).
FrameNet attempts to achieve such a normalization by using standardized frame and role
names. Unfortunately, the limited coverage of the FrameNet resource (Shen and Lapata, 2007;
Cao et al., 2008) does not allow us to solve the problem on a large scale.

Analyzing the results, we also found overmergings not implying any explicit contradictions. For
example, in the sentence He sat near him, both he propositions are unlikely be coreferential, but
our framework fails to capture that. Such overmergings might be blocked by explicit modeling
of discourse salience. In the future, we plan to use existing discourse salience models (e.g.,
(Lappin and Leass, 1994)) to create real-valued salience features for weighted unification.

One more issue concerns the quality of the obtained interpretations. Our learning framework
assumes that we can obtain optimal solutions, but we also exploit suboptimal solutions by
imposing a timeout in this experiment. However, it has been reported that exploiting suboptimal
solutions sometimes hurts performance (Finley and Joachims, 2008). In the future, we will
address this problem using an approximate learning framework (e.g., (Huang et al., 2012)).

Conclusion and perspectives

In this paper, we investigated the overmerging problem in a general inference-based discourse
processing pipeline using the mode of inference called weighted abduction. In our framework,
resolving coreference is a by-product of constructing best interpretations of text. Coreference
links naturally result from unifications of predications during the inference process. The naive
approach to unification involves unifying predications with the same predicate names.

This paper presents the first systematic study of the overmerging problem resulting from
naive unification. We proposed several linguistically motivated features for blocking incorrect
unifications as well as employed different large-scale world knowledge resources for establishing
unification via inference. We extended ILP-based weighted abduction in order to accommodate
unification weights and showed how to learn the weights in a supervised manner. All features
and almost all knowledge components proved to improve the performance of our system tested
on a large state-of-the-art test dataset.

We cannot claim that the problem of overmerging has been solved, because we still discover
overmerging of explicit anaphora produced by our system as compared to a state-of-the-art
rule-based coreference resolver. However, the proposed framework presents a significant
improvement over the naive approach (by over 20% of F-measure). Moreover, it is highly
extensible for including more features and knowledge sources.
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